
Thierry Coquand &
Constructive Type Theory

Andrew Pi�s

TC60, Göteborg, August 2022

1/12

Reviewing one strand of T.C.’s work:
Constructive Type Theory

◮ Impredicativity

◮ Inductive types

◮ Equality

not just to celebrate, but also to point out a need.

2/12

Impredicativity

37 years ago

T.C., Une théorie des constructions,
Thèse de troisième cycle, Université Paris VII, Janvier
1985.

3/12

Impredicativity

37 years ago

T.C., Une théorie des constructions,
Thèse de troisième cycle, Université Paris VII, Janvier
1985.

1980s : The search for non-trivial models of F , Fω, CC, . . .

Category theory (esp. topos theory) provides the right framework
(it’s what drew me from categorical logic, realizability toposes, etc
to CS)

3/12

Impredicativity

37 years ago

T.C., Une théorie des constructions,
Thèse de troisième cycle, Université Paris VII, Janvier
1985.

1980s : The search for non-trivial models of F , Fω, CC, . . .

Category theory (esp. topos theory) provides the right framework
(it’s what drew me from categorical logic, realizability toposes, etc
to CS)

but let’s not forget that naive, set-theoretic models are possible if we relinquish
classical logic

λ: (Dana Sco�) set X s.t. X ∼= XX

F : (AMP) set-of-sets U s.t.
∀X ∈ U , ∀Y ∈ U ,YX ∈ U ∧ ∀F ∈ UU ,ΠX∈U F (X) ∈ U

Fω , CC: . . .
3/12

Impredicativity

37 years ago

T.C., Une théorie des constructions,
Thèse de troisième cycle, Université Paris VII, Janvier
1985.

impredicativity can be dangerous. . .

T.C., An Analysis of Girard’s Paradox, 1st LICS 1986.

. . . and was never the main point of CC:

T.C. and G. Huet, Constructions: A higher order proof
system for mechanizing mathematics, European
Conference on Computer Algebra, 1985.

3/12

Inductive types

From CC to CIC:

T.C. and C. Paulin, Inductively defined types, COLOG-88
(SLNCS 417) 1988.
“One other point is that it seems more elegant to have the notion of inductive
types in the core of the formal system, rather to build it as a derived notion”
[using impredicativiy, or using W-types]

“I” is the most important le�er in “CIC”

Along with preceding work of Dybjer, Martin-Löf, Backhouse, . . . , it
was the start of a very long, still unfinished story of crucial
importance to all users of Coq, Agda, Lean,

4/12

Inductive types

From CC to CIC:

T.C. and C. Paulin, Inductively defined types, COLOG-88
(SLNCS 417) 1988.

T.C., Pa�ern Matching with Dependent Types,
TYPES 1992.

Dependent pa�ern matching (DPM) is what made me an Agda user,
circa 2010. At the time T.C. told me he does not like using Agda
because

4/12

Inductive types

From CC to CIC:

T.C. and C. Paulin, Inductively defined types, COLOG-88
(SLNCS 417) 1988.

T.C., Pa�ern Matching with Dependent Types,
TYPES 1992.

Dependent pa�ern matching (DPM) is what made me an Agda user,
circa 2010. At the time T.C. told me he does not like using Agda
because 1992 version of DPM is too liberal – allows one to prove
uniqueness of identity proofs (Streicher’s Axiom K).

Fixed in later versions of Agda (first ad hoc and then properly by
Jesper Cockx, PhD 2017).

Coq and Lean users now also have access to DPM.

4/12

Inductive types

From CC to CIC:

T.C. and C. Paulin, Inductively defined types, COLOG-88
(SLNCS 417) 1988.

T.C., Pa�ern Matching with Dependent Types,
TYPES 1992.

Dependent pa�ern matching (DPM) is what made me an Agda user,
circa 2010. At the time T.C. told me he does not like using Agda
because 1992 version of DPM is too liberal – allows one to prove
uniqueness of identity proofs (Streicher’s Axiom K).

Fixed in later versions of Agda (first ad hoc and then properly by
Jesper Cockx, PhD 2017).

Coq and Lean users now also have access to DPM.

What’s so bad about that?

4/12

Equality types

A watershed for constructive type theory:

Many authors, Homotopy Type Theory,
Univalent Foundations of Mathematics, IAS 2013.

2010- : The search for non-trivial models of univalence.

M. Bezem, T.C. and S. Huber, A Model of Type Theory in
Cubical Sets, TYPES 2013

5/12

Equality types

A watershed for constructive type theory:

Many authors, Homotopy Type Theory,
Univalent Foundations of Mathematics, IAS 2013.

2010- : The search for non-trivial models of univalence.

M. Bezem, T.C. and S. Huber, A Model of Type Theory in
Cubical Sets, TYPES 2013

Category theory (particularly presheaf toposes) again provides the
right framework.

[It seems (?) that naive, set-theoretic models are not possible, even if we

relinquish classical logic.]

6/12

Equality types

A watershed for constructive type theory:

Many authors, Homotopy Type Theory,
Univalent Foundations of Mathematics, IAS 2013.

2010- : The search for non-trivial models of univalence.

M. Bezem, T.C. and S. Huber, A Model of Type Theory in
Cubical Sets, TYPES 2013

Category theory (particularly presheaf toposes) again provides the
right framework.

[It seems (?) that naive, set-theoretic models are not possible, even if we

relinquish classical logic.]

However, for users, univalence may not be the most important thing
about Univalent Foundations. . .

6/12

HITs
HoTT focuses the mind on higher-dimensional aspects of equality;
and then its perfectly natural to consider high-dimensional
constructors

C. Cohen, T.C., S. Huber & A. Mörtberg, Cubical Type
Theory, TYPES 2015.

T.C., S. Huber and A. Mörtberg, On Higher Inductive
Types in Cubical Type Theory, LICS 2018.

7/12

HITs
HoTT focuses the mind on higher-dimensional aspects of equality;
and then its perfectly natural to consider high-dimensional
constructors

C. Cohen, T.C., S. Huber & A. Mörtberg, Cubical Type
Theory, TYPES 2015.

T.C., S. Huber and A. Mörtberg, On Higher Inductive
Types in Cubical Type Theory, LICS 2018.

As before for CC, the work has had practical (if still experimental)
outcome with Agda’s --cubical mode.

A. Vezzosi, A. Mörtberg & A. Abel, Cubical Agda: A Dependently Typed
Programming Language with Univalence and Higher Inductive Types, ICFP 2019.

But HITs are not yet beautifully practical in the way that
inductive-types-with-dependent-pa�ern-matching are. . .

7/12

--cubicalmode of Agda

allows user-declared HITs

data Bag(X : Set) : Set where

[] : BagX

_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

this
is not an inductively defined identity type,

but rather a path equality type

8/12

--cubicalmode of Agda

allows user-declared HITs

data Bag(X : Set) : Set where

[] : BagX

_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

this
is not an inductively defined identity type,

but rather a path equality type

interval I with end points i0, i1 : I
path between x , y : X is function p : I � X

with p i0 = x and p i1 = y (definitional equalities)
x ≡ y is the type of such paths

8/12

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where
[] : BagX
_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ ys = ?

9/12

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where
[] : BagX
_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs ∪ ys)
xs∪ (swap y y′ ys i) = ?

Agda says: Goal: BagX

Boundary

i = i0 ⊢ y :: y′ :: (xs ∪ ys)
i = i1 ⊢ y′ :: y :: (xs ∪ ys)

9/12

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where
[] : BagX
_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs ∪ ys)
xs∪ (swap y y′ ys i) = swap y y′ (xs ∪ ys) i

9/12

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where
[] : BagX
_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs ∪ ys)
xs∪ (swap y y′ ys i) = swap y y′ (xs ∪ ys) i

assoc : (xs ys zs : BagX) � xs∪ (ys ∪ zs) ≡ (xs∪ ys)∪ zs

assoc xs ys zs i = ?

9/12

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where
[] : BagX
_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs ∪ ys)
xs∪ (swap y y′ ys i) = swap y y′ (xs ∪ ys) i

assoc : (xs ys zs : BagX) � xs∪ (ys ∪ zs) ≡ (xs∪ ys)∪ zs

assoc xs ys [] i = xs∪ ys

assoc xs ys (z :: zs) i = z :: (assoc xs ys zs i)
assoc xs ys (swap z z ′ zs j) i = ?

Agda says: Goal: BagX

Boundary

j = i0 ⊢ z :: z ′ :: assoc xs ys zs i
j = i1 ⊢ z ′ :: z :: assoc xs ys zs i
i = i0 ⊢ swap z z ′(xs ∪ (ys ∪ zs) j
i = i1 ⊢ swap z z ′((xs ∪ ys) ∪ zs) j

9/12

--cubicalmode of Agda

allows pa�ern-matching on generic elements i : I
when defining functions on HITs

data Bag(X : Set) : Set where
[] : BagX
_ :: _ : X � BagX � BagX

swap : (x y : X)(zs : BagX) � x :: y :: zs ≡ y :: x :: zs

∪ : (xs ys : BagX) � BagX

xs∪ [] = xs

xs∪ (y :: ys) = y :: (xs ∪ ys)
xs∪ (swap y y′ ys i) = swap y y′ (xs ∪ ys) i

assoc : (xs ys zs : BagX) � xs∪ (ys ∪ zs) ≡ (xs∪ ys)∪ zs

assoc xs ys [] i = xs∪ ys

assoc xs ys (z :: zs) i = z :: (assoc xs ys zs i)
assoc xs ys (swap z z ′ zs j) i = swap z z ′ (assoc xs ys zs i) j

9/12

--cubicalmode of Agda

◮ Boundary equality constraints for n-dimensional cubes can
very complicated

◮ there is no support for solving them (need something
akin to “chain-reasoning”)

◮ n-cubes are overkill when working modulo Axiom K

◮ The combination of cubical features with pa�ern-matching for
inductive indexed families is tricky to get right (--cubical
mode for Agda v2.6.1 was logically inconsistent)

10/12

ITPs & [formalized] mathematics

The need/desire is clear (see for example, various Coq libraries,
Lean’s mathlib and Isabelle/HOL’s Archive of Formal Proofs).

Existing ITPs are great, but could be be�er. In particular, the notion
of equality in mathematics is fluid (both semantically and
syntactically)—we need more usable ITP facilities for dealing with
quotients.

11/12

ITPs & [formalized] mathematics

Existing ITPs are great, but could be be�er. In particular, the notion
of equality in mathematics is fluid (both semantically and
syntactically)—we need more usable ITP facilities for dealing with
quotients.

HoTT to the rescue? The idea behind HITs is important even if you
don’t buy into the HoTT agenda.

Forget about higher dimensions and univalence.
Don’t worry so much about canonicity (computation
in proof is important, program extraction is not, in
this context)











heresy!

11/12

ITPs & [formalized] mathematics

Existing ITPs are great, but could be be�er. In particular, the notion
of equality in mathematics is fluid (both semantically and
syntactically)—we need more usable ITP facilities for dealing with
quotients.

HoTT to the rescue? The idea behind HITs is important even if you
don’t buy into the HoTT agenda.

Forget about higher dimensions and univalence.
Don’t worry so much about canonicity (computation
in proof is important, program extraction is not, in
this context)











heresy!

Is there an extension of 1992-style dependent pa�ern
matching (⇒UIP) for defining functions out of quotient
inductive types?

Such a thing would be very useful in practice.

11/12

Moral

Theory is essential (says this theorist)
but do not loose sight of

user perspective (says this user)

12/12

Moral

Theory is essential (says this theorist)
but do not loose sight of

user perspective (says this user)

I would say T.C.’s work exemplifies this balance of
theory and practice.

Happy 611⁄3 birthday!

12/12

