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Welcome to the 2022 Virtual ICM!

1 would like to warmily welcome all participants in this virtual ICM. Organizing this event in a short timeframe, with limited human resources,
has been a very challenging task. | sincerely hope that this effort proves to be successful and that all of you can, as a result, enjoy learning
about the latest developments in mathematics

Carlos E. Kenig, IMU president
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Constructive Mathematics



Coq'’s standard library: transitive closure of a relation

The transitive closure R" of R is the smallest transitive relation containing R.
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Coq'’s standard library: transitive closure of a relation

The transitive closure R" of R is the smallest transitive relation containing R.
Constructed as:

+oo
R*=|JR" with Ri=R R.1=RoR"

i=1

Formalized as:

Inductive clos_trans (x : A) : A -> Prop :=
| t_step (y : A) : R x y -> clos_trans x y
| t_trans (y z : A) : clos_trans x y -> clos_trans y z -> clos_trans x z.



Equality up to permutation

In Coq's (or Agda's) standard library, for an arbitrary type a:

Inductive Permutation : list A -> list A -> Prop :=

| perm_nil: Permutation [] []

| perm_skip x 11 12 : Permutation 11 12 -> Permutation (x :: 11) (x :: 12)

| perm_swap x y 1 : Permutation (y :: x:: 1) (x :: y :: 1)

| perm_trans 1 1’ 1’’ : Permutation 11 12 -> Permutation 12 13 -> Permutation 11 13.
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| perm_nil: Permutation [] []
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In Mathematical Components, for a type a with decidable equality:

(x _ == : nat -> nat -> bool *)
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all [pred x | count_mem x 11 == count_mem x 12] (11 ++ 12)



Equality up to permutation

In Coq's (or Agda's) standard library, for an arbitrary type a:

Inductive Permutation : list A -> list A -> Prop :=

| perm_nil: Permutation [] []

| perm_skip x 11 12 : Permutation 11 12 -> Permutation (x :: 11) (x :: 12)

| perm_swap x y 1 : Permutation (y :: x:: 1) (x :: y :: 1)

| perm_trans 1 1’ 1’’ : Permutation 11 12 -> Permutation 12 13 -> Permutation 11 13.

In Mathematical Components, for a type a with decidable equality:

(x _ == : nat -> nat -> bool *)
Definition perm_eq (11 12 : list A) : bool :=

all [pred x | count_mem x 11 == count_mem x 12] (11 ++ 12)

Lemma perm_cat2l 11 12 13 : perm_eq (11 ++ 12) (11 ++ 13) = perm_eq 12 13.
Proof .
apply/permP/permP=> eq23 a; apply/eqP;
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.
Qed.



C-CoRN: Coq Repository at Nijmegen

A library for constructive algebra and analysis, started circa 2000.

€« > C O 8 hitpsy//com.cs.runl
4 Importer les marque-pages... @ Débuter avec Firefox § Reviews and Commen.

Coq Repository at Nijmegen

‘The CoRN library has very roughly been developed in the following stages, chronologically

+ Fundamental Theorem of Algebra and the algebraic hierarchy. (Geuvers, Pollack, Wiedijk and Zwanenburg)
Fundamental Theorem of Calculus, closely following the Bishop-Bridges book on Constructive Analysis. (PhD: Cruz-Filipe, advisor: Geuvers)
Program extraction for real comput

ct model of the real numbers (PhD: Niqui, advisor: Geuvers)

nt computation with real numbers and metric spaces (PhD: O'Connor, advisor: Spitters)

. nn integration (O'Connor, Spitters)

« Interface with Coq's standard library reals (Kaliszyk, 0'Connor),

ForMath project (Spitters, Krebbers, van der Weegen, Makarov)
Fast computation inside Coq
Development of the math-classes library using type classes.
Development of a simple ODE-solver.

See the publications section for a longer description.
Publications] [Sources

e Every non-constant single-variable polynomial with complex coefficients
has at least one complex root. (1806)
e The integral of a function provides one of its antiderivatives. (circa 1700)



Structures, setoids, hierarchies

Structures as dependent pairs:

(T,p7): X(x: Type)S x

Or rather, tuples:

Record invType := {sort : Type; inv : sort -> sort; idem : involution inv}

[Telescopic mappings in typed lambda calculus, N. G. de Bruijn (1974, 1991), link]

[Dependently typed records for representing mathematical structure, R. Pollack (2000) link]


https://doi.org/10.1016/0890-5401(91)90066-B
https://link.springer.com/chapter/10.1007/3-540-44659-1_29

Structures, setoids, hierarchies

Quotients as constructive setoids:

Record CSetoid : Type := {

cs_crr : Type;

cs_eq : relation cs_crr; (* equality x ~ y *)

cs_ap : relation cs_crr; (x apartness x # y *)

cs_proof : is_CSetoid cs_crr cs_eq cs_ap} (* constructive setoid axioms *)

Constructive setoid axioms, about apartness:

o irreflexivity: —(x £ x)

e symmetry: (x f y) = (y t x)

e co-transitivity: (x fy) = (x§2z)V(z4y)
e tightness: =(x  y) < (x ~ y)


http://www.cs.ru.nl/~freek/pubs/alghier1.ps.gz

Structures, setoids, hierarchies

Quotients as constructive setoids:

Record CSetoid : Type := {

cs_crr : Type;

cs_eq : relation cs_crr; (* equality x ~ y *)

cs_ap : relation cs_crr; (x apartness x # y *)

cs_proof : is_CSetoid cs_crr cs_eq cs_ap} (* constructive setoid axioms *)

Constructive setoid axioms, about apartness:

irreflexivity: —(x f x)

symmetry: (x fy) = (v f x)
co-transitivity: (x fy) = (xf z)V(z4y)

tightness: =(x fy) & (x ~y) 7

“However ... we wanted the notion of constructive setoid to be a refinement of
the notion of setoid.”

[A Constructive Algebraic Hierarchy in Coq, H. Geuvers, R. Pollack, F. Wiedijk, J. Zwanenburg, JSC (2002), link]


http://www.cs.ru.nl/~freek/pubs/alghier1.ps.gz

Structures, setoids, hierarchies

Coercion (explicit subtyping) based inheritance:
Record CRing : Type :=
{ cr_crr :> CGroup;

cr_ome : cr_crr;

Cr_zero : Cr_crr;

cr_mult: CSetoid_bin_opp cr_crr;

cr_proof : is_CRing cr_crr cr_one cr_mult}

where cr_crr : CRing -> CGroup is a coercion.


http://arxiv.org/abs/1106.3448/
http://dx.doi.org/10.1017/S0960129511000119

Structures, setoids, hierarchies

Coercion (explicit subtyping) based inheritance:

Record CRing : Type :=
{ cr_crr :> CGroup;
cr_ome : cr_crr;
Cr_zero : Cr_crr;
cr_mult: CSetoid_bin_opp cr_crr;
cr_proof : is_CRing cr_crr cr_one cr_mult}

where cr_crr : CRing -> CGroup is a coercion.

Later improved by a type class based hierarchy (MathClasses).

[Type Classes for Mathematics in Type Theory, B. Spitters, E. van der Weegen, MSCS (2011), link]

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, LMCS (2013), link]


http://arxiv.org/abs/1106.3448/
http://dx.doi.org/10.1017/S0960129511000119

Computable real numbers

e Computable real numbers a la Bishop - Bridges

A dic, functional impl ion of real bers, R. O'Connor, 2007, MSCS, link]

e Connection with Coq's standard library for classical reals

A dic, fi ional impl ion of real bers, C. Kaliszyk, R. O'Connor, 2009, JFR. link]

e Speed up using machine integers, expanded and better structured

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

10


https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958
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Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.
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Computable real numbers

e Computable real numbers a la Bishop - Bridges

A dic, functional impl ion of real bers, R. O'Connor, 2007, MSCS, link]

e Connection with Coq's standard library for classical reals

A dic, fi ional impl ion of real bers, C. Kaliszyk, R. O'Connor, 2009, JFR. link]

e Speed up using machine integers, expanded and better structured

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.

Computed 25 decimals of sine(e) in 0.1s, 500 decimals in 1.9s.
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https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computational Mathematics



2006: Verified four color theorem

e First (computer-aided) proof: W. Appel and K. Haken, 1976
e Formally verified proof: G. Gonthier, with B. Werner, 2006

e Uses (optimized) computation inside logic

akil,


https://www.ams.org/notices/200811/tx081101382p.pdf

2006: Verified four color theorem

e First (computer-aided) proof: W. Appel and K. Haken, 1976
e Formally verified proof: G. Gonthier, with B. Werner, 2006

e Uses (optimized) computation inside logic

Variable (m : map R).

Theorem four_color_finite : finite_simple_map m -> colorable_with 4 m.
Proof .

intros fin m.

pose proof (discretize.discretize_to_hypermap fin_m) as [G planarG colGl.
exact (colG (combinatorialédct.four_color_hypermap planarG)) .

Qed.

Theorem four_color : simple_map m -> colorable_with 4 m.
Proof. exact (finitize.compactness_extension four_color_finite). Qed.

[Formal Proof—The Four-Color Theorem, G. Gonthier (2008) link]

akil,


https://www.ams.org/notices/200811/tx081101382p.pdf

2006: Verified four color theorem

e Verification of the non-trivial computational part of the proof

Formalization of a corpus of modern combinatorics

Formal proof engineering methodology

Novel/rediscovered mathematics

12
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A database Hall of fame

The LMFDE is an extensive database of
mathematical objects arising in Number Theory.

Riemann zeta function
Ramanujan A function and its L-function
€277 and its L-function

of Gauss eliptic curve and its L-function
Grand Canyon L-function

‘Sample lsts: L-functions, Eliptic curves, Tabl
zeros, Number fields

Search and browse Visualize data

‘Search for objects with specific properties, or browse
categories.

Explore individual plots or view distributions of various
objects.

Browse: Lfunctions, Modular forms, Eliptic curves,
Number fields

Examples: GL(4) Level one Maass forms, Isogeny
graph of elliptic curve 102.c

See a random object from the database

Explore and learn B 1 cmuony.

2

Code and open software

The LMFDB makes visible the connections predicted scsiasssnt (). feetc Download the data, download the code, or see how
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LMFDB - The L-functions and Modular Forms Database

A database
The LMFDE is an extensive database of
mathematical objects arising in Number Theory.

‘Sample lsts: L-functions, Eliptic curves, Tables of
zeros, Number fields

Search and browse
‘Search for objects with specific properties, or browse
categories.

Browse: Lfunctions, Modular forms, Eliptic curves,
Number fields

See a random object from the database

Feedback - Hide Menu
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Riemann zeta function
Ramanujan A function and its L-function
€277 and its L-function

Gauss eliptic curve and s L-function
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Explore individual piots or view distributions of various
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Handbooks

Feedback - Hide Menu

MFD!

a
LMFDB - The L-functions and Modular Forms Database

Introduction = A database Hall of fame
Overview  Random
e = The LMFDE is an extensive database of Riemann zeta function

T mathematical objects arising in Number Theory. Ramanujan A function and its L-function
Lefunctions. (G €277 and its L-function

~ 1 samplelists: L-functions, Eliptic curves, Tables of Gauss eliptic curve and its L-function

Ratonal Al < s zeros, Number fields Grand Canyon L-function
Modular forms. :
Classical  Maass
Hilbert Bianchi
Varieties Search and browse Visualize data
Elliptic curves over g

‘Search for objects with specific properties, or browse
categories.

Explore individual plots or view distributions of various
objects.

Elliptic curves over Q(a: a
Genus 2 curves over o
Browse: Lfunctions, Modular forms, Eliptic curves,

Examples: GL(4) Level one Maass forms, Isogeny
on Number fields

graph of elliptic curve 102.c

Higher genus families.

Abelian varieties over

See a random object from the database
Lol

Integral points

These were computed rigorously, using independent implementations in Magma and 1 which were as a consistency check.
-
by the Langlands program. Knows of groun the data was generated.
Groups information when you need it

GitHub  SageMath PariGP Magma Python
Galois groups.

LMFDB universe ~ Knowledge
Sato-Tate groups.

the UK Engineering
Contact - Cittion - Acknowledgmens - Editorial Board - Source - SageMath version 9.2 - LMFDB Release 1.2.1

Today, no explicit policy exist for auditing software that produce proof steps.
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Cross-verification is not enough

In SymPy 1.5.1 *, compare

1  >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})

1Example suggested by F. Johansson.
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Cross-verification is not enough

In SymPy 1.5.1 *, compare

1  >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})
E
= Post-hoc verification techniques cannot apply.
Wolfram Language (Mathematica) exhibit the exact same phenomenon.

= Cross-verification is not enough.

1Example suggested by F. Johansson.
14



Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)

Every odd integer greater than 5 is the sum of three primes.

15



Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)

Every odd integer greater than 5 is the sum of three primes.

MAJOR ARCS FOR GOLDBACH'S PROBLEM 35
By Cauchy-Schwarz, this is at most
2 | ~loico L(s,x) s

By @I2),

1
/—5+zm
1o

2

2 L4
L b

lds| - \| 5 / IG5(s)sl” |ds|
T f—ico

L'(s,%) *

112 p— §+ico
-l |ds| < /
L(s,x) 5| e —1ico

logg
s

[ds]

. /w |3 log (72 + §) +4.1396 + log|* |
. 1472
< V2mlogq + v226.844,

where we compute the last integral nmncrica.llyﬂ

4By a rigorous integration from T = —100000 to 7 = 100000 using VNODE-LP [Ned06],
which runs on the PROFIL/BIAS interval arithmetic package[Knii99].

15



Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)

Every odd integer greater than 5 is the sum of three primes.

MAJOR ARCS FOR GOLDBACH'S PROBLEM 35
By Cauchy-Schwarz, this is at most
2 | ~loico L(s,x) s

By @I2),

1
/—5+zm
1o

2

2 L4
L b

lds| - \| 5 / IG5(s)sl” |ds|
T f—ico

L'(s,%) *

112 p—§+ico
-l |ds| < /
L(s,x) 5| e —1ico

logg
s

[ds]

. /w |3 log (72 + §) +4.1396 + log|* |
. 1472
< V2rlogq+ v226.844,

where we compute the last integral nmncrica.llyﬂ

4]3y a rigorous integration from 7 = —100000 to 7 = 100000 using VNODE-LP [Ned06],
which runs on the PROFIL/BIAS interval arithmetic package[Knii99).

e This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Catalog of univariate elementary functions

Described by an abstract syntax:

E = x|F|n|
E+E|E-C|EXE|IEFE| =€ ||
VE | €|
cos(&) | sin(€) | tan(€) | atan(€) |
exp(€) | In(&)

16



Specification of interval extensions

The library implements interval extensions for each elementary function:

° [e]ﬂh o R — R,
° [e]]u I — 1,

17



Specification of interval extensions

The library implements interval extensions for each elementary function:

° [e]ﬂh : Ry - Ry
) [e]]u : HL*)HL

Example:
Viel,,Vx €i, w4 cos(x)¢€ m+ cos(i)
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Specification of interval extensions

The library implements interval extensions for each elementary function:

° [e]ﬂh : Ry - Ry
) [e]]u : HL*)HL

Example:
Viel,,Vx €i, w4 cos(x)¢€ m+ cos(i)

Correctness theorem of interval extensions:

Vee EViel  ,Vxei, [e]r, (x) € [e]li, (1)

17



Formally verified approximations

Initial problem:

b
/ f(x)dx € [m,M] 7

18



Formally verified approximations

Entry in the Catalog:

[en]r
/ [erlrdx € [m, M] ?

[ealr

19



Formally verified approximations

Verified computation:

[en]r
/ [er]rd

[ea]r

20



Formally verified approximations

Verified computation:

[en]r [eplr
/ [er]rdx € / [er]udx
. [

[ea]r ealr
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Formally verified approximations

Verified computation:

[ep]r [ep]r
/ [ef]rdx € / [erludx C [m, M]
° [

[ea]r ealr

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Formally verified approximations

Verified computation, using rigorous polynomial approximations:

[en]r [en]
/ [er]rax € / [er] 1 dx C [m, M]
[ea]

[ealr
[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

21



Formally verified rigorous computations

1
/ |(x* +10x> +19x* — 6x — 6€”|dx ~ 11.14731055005714
0

22



Formally verified rigorous computations

1
/ |(x* +10x> +19x* — 6x — 6€”|dx ~ 11.14731055005714
0

e Octave's quad/quadgk: only 10/9 correct digits;
e INTLAB verifyquad: false answer without warning;

e VNODE-LP: cannot be used because of the absolute value.
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Formally verified rigorous computations

1
/ |(x* +10x> +19x* — 6x — 6€”|dx ~ 11.14731055005714
0

e Octave's quad/quadgk: only 10/9 correct digits;
e INTLAB verifyquad: false answer without warning;

e VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) = Removal of the support for the absolute value

22



Formally verified rigorous computations

arb_sqrt(arb_t z, const arb_t x, slong prec)

{
mag_t rx, zr;
int inexact;
if (mag_is zero(arb_radref(x)))
{
arb_sqrt_arf(z, arb_midref(x), prec);
¥
else if (arf_is_special(arb_midref(x)) ||
arf_sgn(arb_nidref (x)) < 0 || mag_is_inf(arb_radref(x)))
{
65 1f (arf_is pos_inf(arb_midref(x)) & mag is finite(arb_radref(x}))
arb_sqrt_arf(z, arb_midref(x), prec);
else
68 arb_indeterninate (z);
1
else h mid and rad are non values, nid > @
7 {
72 slong acc;
74 acc = _fmpz_sub_small (ARF_EXPREF(arb_nidref(x)), MAG_EXPREF(arb_radref(x)));
75 FLINT_MIN(acc, prec);
76 prec = FLINT_MIN(prec, acc + NAG BITS);
7 prec = FLINT_MAX(prec, 2);
if (acc < @)
arb_indeterninate(z);
}
else if (acc <= 20)
84 {
85
mag_init(t);
88 mag_init(u);

arb_get_mag_lower (t, x);

if (mag_is_zero(t) && arb_contains_negative(x))

{

The Arb library for arbitrary precision arithme

23



Plotting exp(—x?) with sagemath

24



Plotting exp(—x?) with sagemath
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Plotting exp(—x?) with sagemath
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Plotting sin(x) for x € [0,3141]

25



Plotting sin(x) for x € [0,3141]

Gnuplot

25



Plotting sin(x) for x € [0,3141]
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Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs

26



Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs
Desired properties:

e Correctness: blank pixels are not traversed by the function graph

e Completeness: filled pixels are traversed by the function graph
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Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs
Desired properties:

e Correctness: blank pixels are not traversed by the function graph

e Completeness: filled pixels are traversed by the function graph

= Formally verified plots: guarantee correctness and strive for completeness

26



Generating formally verified plots

To obtain a verified plot for f(x) for x € X:

Partition X in (Xi)i=1...n

Produce a list (¢;)i=1..., of intervals

Ensure (with a formal proof) that for every i =1...n:

Vx € Xi, f(x) € ¢

Fill the corresponding pixels.

Rigorous polynomial approximation make computations efficient enough.

[Plotting in a formally verified way, G. Melquiond, F-IDE 2021]
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File Edit Options Buffers Tools

QOstate  COContext BWGoal K Retract @ Undo BNext ¥ Use bdGoto

Require Inport Re:

From Coquelicot Require Import Coquelicot.

Require Import Interval.Tact
Open Scope R_scope

Definition plotl := ltac:(plot
Definition plot2 := ltac:(plot
>Plot plot1
Plot plot2
~i--- demo.v Top L32

emacs@tepoztian

Coq ProofGeneral Holes Help

nterval.Plot

(fun x => exp (-x * x)) (-10000)

(Coa script(e-) H

flhHome  _CFind

*goals*

*responsex

@it

1%Command

A Prooftree
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nnnnnnnnnnnnnnnnnnnn

Verified plot of exp(—x?) for
x € [—10000, 10000]
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Verified plot of exp(—x?) for Verified plot of sin(x) for
x € [~10000, 10000] x € [0,3141]
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Contemporary Mathematics




2013: Odd order theorem formally verified

Theorem (W. Feit - J. G. Thompson, 1963)
Every finite group of odd order is solvable.

AYOIHL SIOTV) niasunoov

[A formal proof of the Odd Order theorem, Gonthier et al., Proc. of ITP 2013]
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2013: Odd order theorem formally verified

Problems:

e Maintenance

Readability of mathematical statements and proofs scripts

e Performance issues on the interactive prover side

(Keep the proof constructive)
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Mathematical notation

e Inference:

Definition det (n : nat) (A : ’M_n[R]) : R := \sum_(s : S_n) (-1) "+ s * \prod_i A i
(s 1)

det(A) = Z (=1)~ H Aio (i)
ocES, i=1
e Linguistics

Theorem third_isog (G H K : {group gT}) : H \subset K -> H<| G -> K <| G
-> (G / H / K/ H \isog (G / K).

(G/H)/(K/H) ~ (G/K) when HC K,H<4G,K<G
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From the Odd order theorem to the Mathematical Components library

e types with decidable equality and choice operator

e h-sets and Hedberg theorem

e type classes / unification hints hierarchies

e conversion / small scale reflexion

e enhanced support for forward chaining in the tactic language

e rewrite the mathematics
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Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]
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Lean is an interactive prover based on the Calculus of Inductive Constructions.

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

e 2018: Field medal awarded to P. Scholze
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Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

e 2018: Field medal awarded to P. Scholze
e 2019: Definition of perfectoid spaces in Lean

[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’'2020]
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Today: Mathematics in the making

parameter (p : primes)

/-- A perfectoid ring is a Huber ring that is complete, uniform,

that has a pseudo-uniformizer whose p-th power divides p in the power bounded subring,
and such that Frobenius is a surjection on the reduction modulo p.-/

structure perfectoid ring (R : Type) [Huber_ring R] extends Tate ring R : Prop :=
(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : 3 @ : pseudo_uniformizer R, wAp | p in Re)

(Frobenius : surjective (Frob Re/p))

/-- Condition for an object of CLVRS to be perfectoid: every point should have an open
neighbourhood isemorphic to Spa(A) for some perfectoid ring A.-/
def is perfectoid (X : CLVRS) : Prop :=
¥ x : X, 3 (U : opens X) (A : Huber_pair) [perfectoid ring A],
(x € U) A (Spa A = U)

/-- The category of perfectoid spaces.-/
def PerfectoidSpace := {X : CLVRS // is_perfectoid X}

end
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Today: Mathematics in the making

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]
e 2018: Field medal awarded to P. Scholze

e 2019: Definition of perfectoid spaces in Lean

[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’'2020]
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ay: Mathematics in the making

2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

2018: Field medal awarded to P. Scholze

2019: Definition of perfectoid spaces in Lean

[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’'2020]

2022: Liquid Tensor Experiment: J. Commelin et al.

[Half a year of the Liquid Tensor Experiment: Amazing developments, P. Scholze on the Xena blog, 2021]
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Today: Mathematics in the making

Quoting P. Scholze about the Liquid Tensor experiment:

“(...) This makes the rest of the proof of the Liquid Tensor Experiment
considerably more explicit and more elementary, removing any use of stable
homotopy theory. | expect that Commelin's complex may become a standard
tool in the coming years.”

“(...) this made me realize that actually the key thing happening is a reduction
from a non-convex problem over the reals to a convex problem over the
integers.”
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If more mathematicians start using proof assistants

e Publications
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If more mathematicians start using proof assistants

e Publications

e Teaching
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If more mathematicians start using proof assistants

e Publications
e Teaching

e Collaborations
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If more mathematicians start using proof assistants

Publications

e Teaching

Collaborations

Creativity
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G. Huet: “Formal Mathematics in COC is fun”

Novel community of users of CIC, with different motivations
e Many exciting projects (e.g., P. Massot's project about sphere eversion)

e Impact on the implementation of interactive provers

But difficult non-technological questions remain
modularity, hierarchies, isomorphisms,. ..
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Can we make symbolic computation fast and correct?

Joint work in progress with G. Melquiond et al.

Computer-
Existential Prodrijced cic
Properties Mathematics
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Gallina
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The FRESCO project has received funding from the European Research Council (ERC) under the European

Union's Horizon 2020 research and innovation programme (grant agreement No. 101001995)
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