
Formalizing mathematics, in practice

Workshop in Honour of Thierry Coquand’s 60th Birthday

Assia Mahboubi

August 26th 2022

Inria, LS2N, Université de Nantes, Vrije Universiteit Amsterdam

1

Thank you

• Mathematics, Algorithms and Proofs (MAP) community

• TYPES Summer School, Göteborg 2005

• FORMATH European project 2010-2013

• Univalent Foundations of Mathematics IAS Princeton 2012-2013

• ...

2

International Congress of Mathematicians 2022

3

Constructive Mathematics

Coq’s standard library: transitive closure of a relation

The transitive closure R+ of R is the smallest transitive relation containing R.

Constructed as:

R+ =
+∞⋃
i=1

R i with R1 = R Rn+1 = R ◦ Rn

Formalized as:

Inductive clos_trans (x : A) : A -> Prop :=
| t_step (y : A) : R x y -> clos_trans x y
| t_trans (y z : A) : clos_trans x y -> clos_trans y z -> clos_trans x z.

4

Coq’s standard library: transitive closure of a relation

The transitive closure R+ of R is the smallest transitive relation containing R.

Constructed as:

R+ =
+∞⋃
i=1

R i with R1 = R Rn+1 = R ◦ Rn

Formalized as:

Inductive clos_trans (x : A) : A -> Prop :=
| t_step (y : A) : R x y -> clos_trans x y
| t_trans (y z : A) : clos_trans x y -> clos_trans y z -> clos_trans x z.

4

Coq’s standard library: transitive closure of a relation

The transitive closure R+ of R is the smallest transitive relation containing R.

Constructed as:

R+ =
+∞⋃
i=1

R i with R1 = R Rn+1 = R ◦ Rn

Formalized as:

Inductive clos_trans (x : A) : A -> Prop :=
| t_step (y : A) : R x y -> clos_trans x y
| t_trans (y z : A) : clos_trans x y -> clos_trans y z -> clos_trans x z.

4

Equality up to permutation

In Coq’s (or Agda’s) standard library, for an arbitrary type A:

Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l1 l2 : Permutation l1 l2 -> Permutation (x :: l1) (x :: l2)
| perm_swap x y l : Permutation (y :: x:: l) (x :: y :: l)
| perm_trans l l’ l’’ : Permutation l1 l2 -> Permutation l2 l3 -> Permutation l1 l3.

In Mathematical Components, for a type A with decidable equality:

(* _ == _ : nat -> nat -> bool *)
Definition perm_eq (l1 l2 : list A) : bool :=
all [pred x | count_mem x l1 == count_mem x l2] (l1 ++ l2).

Lemma perm_cat2l l1 l2 l3 : perm_eq (l1 ++ l2) (l1 ++ l3) = perm_eq l2 l3.
Proof.
apply/permP/permP=> eq23 a; apply/eqP;
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.

Qed.

5

Equality up to permutation

In Coq’s (or Agda’s) standard library, for an arbitrary type A:

Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l1 l2 : Permutation l1 l2 -> Permutation (x :: l1) (x :: l2)
| perm_swap x y l : Permutation (y :: x:: l) (x :: y :: l)
| perm_trans l l’ l’’ : Permutation l1 l2 -> Permutation l2 l3 -> Permutation l1 l3.

In Mathematical Components, for a type A with decidable equality:

(* _ == _ : nat -> nat -> bool *)
Definition perm_eq (l1 l2 : list A) : bool :=
all [pred x | count_mem x l1 == count_mem x l2] (l1 ++ l2).

Lemma perm_cat2l l1 l2 l3 : perm_eq (l1 ++ l2) (l1 ++ l3) = perm_eq l2 l3.
Proof.
apply/permP/permP=> eq23 a; apply/eqP;
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.

Qed.

5

Equality up to permutation

In Coq’s (or Agda’s) standard library, for an arbitrary type A:

Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l1 l2 : Permutation l1 l2 -> Permutation (x :: l1) (x :: l2)
| perm_swap x y l : Permutation (y :: x:: l) (x :: y :: l)
| perm_trans l l’ l’’ : Permutation l1 l2 -> Permutation l2 l3 -> Permutation l1 l3.

In Mathematical Components, for a type A with decidable equality:

(* _ == _ : nat -> nat -> bool *)
Definition perm_eq (l1 l2 : list A) : bool :=
all [pred x | count_mem x l1 == count_mem x l2] (l1 ++ l2).

Lemma perm_cat2l l1 l2 l3 : perm_eq (l1 ++ l2) (l1 ++ l3) = perm_eq l2 l3.
Proof.
apply/permP/permP=> eq23 a; apply/eqP;
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.

Qed.

5

C-CoRN: Coq Repository at Nijmegen

A library for constructive algebra and analysis, started circa 2000.

• Every non-constant single-variable polynomial with complex coefficients
has at least one complex root. (1806)

• The integral of a function provides one of its antiderivatives. (circa 1700)

• . . .

6

Structures, setoids, hierarchies

Structures as dependent pairs:

(T , pT) : Σ(x : Type)S x

Or rather, tuples:

Record invType := {sort : Type; inv : sort -> sort; idem : involution inv}

[Telescopic mappings in typed lambda calculus, N. G. de Bruijn (1974, 1991), link]

[Dependently typed records for representing mathematical structure, R. Pollack (2000) link]

7

https://doi.org/10.1016/0890-5401(91)90066-B
https://link.springer.com/chapter/10.1007/3-540-44659-1_29

Structures, setoids, hierarchies

Quotients as constructive setoids:

Record CSetoid : Type := {
cs_crr : Type;
cs_eq : relation cs_crr; (* equality x ~ y *)
cs_ap : relation cs_crr; (* apartness x # y *)
cs_proof : is_CSetoid cs_crr cs_eq cs_ap} (* constructive setoid axioms *)

Constructive setoid axioms, about apartness:

• irreflexivity: ¬(x ♯ x)

• symmetry: (x ♯ y) ⇒ (y ♯ x)

• co-transitivity: (x ♯ y) ⇒ (x ♯ z) ∨ (z ♯ y)

• tightness: ¬(x ♯ y) ⇔ (x ∼ y)

?

“However ... we wanted the notion of constructive setoid to be a refinement of
the notion of setoid.”

[A Constructive Algebraic Hierarchy in Coq, H. Geuvers, R. Pollack, F. Wiedijk, J. Zwanenburg, JSC (2002), link]

8

http://www.cs.ru.nl/~freek/pubs/alghier1.ps.gz

Structures, setoids, hierarchies

Quotients as constructive setoids:

Record CSetoid : Type := {
cs_crr : Type;
cs_eq : relation cs_crr; (* equality x ~ y *)
cs_ap : relation cs_crr; (* apartness x # y *)
cs_proof : is_CSetoid cs_crr cs_eq cs_ap} (* constructive setoid axioms *)

Constructive setoid axioms, about apartness:

• irreflexivity: ¬(x ♯ x)

• symmetry: (x ♯ y) ⇒ (y ♯ x)

• co-transitivity: (x ♯ y) ⇒ (x ♯ z) ∨ (z ♯ y)

• tightness: ¬(x ♯ y) ⇔ (x ∼ y) ?

“However ... we wanted the notion of constructive setoid to be a refinement of
the notion of setoid.”

[A Constructive Algebraic Hierarchy in Coq, H. Geuvers, R. Pollack, F. Wiedijk, J. Zwanenburg, JSC (2002), link]

8

http://www.cs.ru.nl/~freek/pubs/alghier1.ps.gz

Structures, setoids, hierarchies

Coercion (explicit subtyping) based inheritance:

Record CRing : Type :=
{ cr_crr :> CGroup;
cr_one : cr_crr;
cr_zero : cr_crr;
cr_mult: CSetoid_bin_opp cr_crr;
cr_proof : is_CRing cr_crr cr_one cr_mult}

where cr_crr : CRing -> CGroup is a coercion.

Later improved by a type class based hierarchy (MathClasses).

[Type Classes for Mathematics in Type Theory, B. Spitters, E. van der Weegen, MSCS (2011), link]

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, LMCS (2013), link]

9

http://arxiv.org/abs/1106.3448/
http://dx.doi.org/10.1017/S0960129511000119

Structures, setoids, hierarchies

Coercion (explicit subtyping) based inheritance:

Record CRing : Type :=
{ cr_crr :> CGroup;
cr_one : cr_crr;
cr_zero : cr_crr;
cr_mult: CSetoid_bin_opp cr_crr;
cr_proof : is_CRing cr_crr cr_one cr_mult}

where cr_crr : CRing -> CGroup is a coercion.

Later improved by a type class based hierarchy (MathClasses).

[Type Classes for Mathematics in Type Theory, B. Spitters, E. van der Weegen, MSCS (2011), link]

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, LMCS (2013), link]

9

http://arxiv.org/abs/1106.3448/
http://dx.doi.org/10.1017/S0960129511000119

Computable real numbers

• Computable real numbers à la Bishop - Bridges
[A monadic, functional implementation of real numbers, R. O’Connor, 2007, MSCS, link]

• Connection with Coq’s standard library for classical reals
[A monadic, functional implementation of real numbers, C. Kaliszyk, R. O’Connor, 2009, JFR. link]

• Speed up using machine integers, expanded and better structured
[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.

Computed 25 decimals of sine(e) in 0.1s, 500 decimals in 1.9s.

10

https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computable real numbers

• Computable real numbers à la Bishop - Bridges
[A monadic, functional implementation of real numbers, R. O’Connor, 2007, MSCS, link]

• Connection with Coq’s standard library for classical reals
[A monadic, functional implementation of real numbers, C. Kaliszyk, R. O’Connor, 2009, JFR. link]

• Speed up using machine integers, expanded and better structured
[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.

Computed 25 decimals of sine(e) in 0.1s, 500 decimals in 1.9s.

10

https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computable real numbers

• Computable real numbers à la Bishop - Bridges
[A monadic, functional implementation of real numbers, R. O’Connor, 2007, MSCS, link]

• Connection with Coq’s standard library for classical reals
[A monadic, functional implementation of real numbers, C. Kaliszyk, R. O’Connor, 2009, JFR. link]

• Speed up using machine integers, expanded and better structured
[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.

Computed 25 decimals of sine(e) in 0.1s, 500 decimals in 1.9s.

10

https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computational Mathematics

2006: Verified four color theorem

• First (computer-aided) proof: W. Appel and K. Haken, 1976

• Formally verified proof: G. Gonthier, with B. Werner, 2006

• Uses (optimized) computation inside logic

Variable (m : map R).

Theorem four_color_finite : finite_simple_map m -> colorable_with 4 m.
Proof.
intros fin_m.
pose proof (discretize.discretize_to_hypermap fin_m) as [G planarG colG].
exact (colG (combinatorial4ct.four_color_hypermap planarG)).
Qed.

Theorem four_color : simple_map m -> colorable_with 4 m.
Proof. exact (finitize.compactness_extension four_color_finite). Qed.

[Formal Proof—The Four-Color Theorem, G. Gonthier (2008) link]

11

https://www.ams.org/notices/200811/tx081101382p.pdf

2006: Verified four color theorem

• First (computer-aided) proof: W. Appel and K. Haken, 1976

• Formally verified proof: G. Gonthier, with B. Werner, 2006

• Uses (optimized) computation inside logic

Variable (m : map R).

Theorem four_color_finite : finite_simple_map m -> colorable_with 4 m.
Proof.
intros fin_m.
pose proof (discretize.discretize_to_hypermap fin_m) as [G planarG colG].
exact (colG (combinatorial4ct.four_color_hypermap planarG)).
Qed.

Theorem four_color : simple_map m -> colorable_with 4 m.
Proof. exact (finitize.compactness_extension four_color_finite). Qed.

[Formal Proof—The Four-Color Theorem, G. Gonthier (2008) link]

11

https://www.ams.org/notices/200811/tx081101382p.pdf

2006: Verified four color theorem

• Verification of the non-trivial computational part of the proof

• Formalization of a corpus of modern combinatorics

• Formal proof engineering methodology

• Novel/rediscovered mathematics

12

Handbooks

Fact
Today, no explicit policy exist for auditing software that produce proof steps.

13

Handbooks

Fact
Today, no explicit policy exist for auditing software that produce proof steps.

13

Handbooks

Fact
Today, no explicit policy exist for auditing software that produce proof steps.

13

Cross-verification is not enough

In SymPy 1.5.1 1, compare

1 >>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))
2 2

with

1 >>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})
2 E

⇒ Post-hoc verification techniques cannot apply.

Wolfram Language (Mathematica) exhibit the exact same phenomenon.

⇒ Cross-verification is not enough.

1Example suggested by F. Johansson.

14

Cross-verification is not enough

In SymPy 1.5.1 1, compare

1 >>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))
2 2

with

1 >>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})
2 E

⇒ Post-hoc verification techniques cannot apply.

Wolfram Language (Mathematica) exhibit the exact same phenomenon.

⇒ Cross-verification is not enough.

1Example suggested by F. Johansson.

14

Cross-verification is not enough

In SymPy 1.5.1 1, compare

1 >>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))
2 2

with

1 >>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})
2 E

⇒ Post-hoc verification techniques cannot apply.

Wolfram Language (Mathematica) exhibit the exact same phenomenon.

⇒ Cross-verification is not enough.

1Example suggested by F. Johansson.

14

Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)
Every odd integer greater than 5 is the sum of three primes.

• This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

15

Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)
Every odd integer greater than 5 is the sum of three primes.

• This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

15

Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)
Every odd integer greater than 5 is the sum of three primes.

• This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

15

Catalog of univariate elementary functions

Described by an abstract syntax:

E := x | F| π |
E + E | E − E | E × E | E ÷ E | − E | ∥E∥ |√
E | Ek |

cos(E) | sin(E) | tan(E) | atan(E) |
exp(E) | ln(E)

16

Specification of interval extensions

The library implements interval extensions for each elementary function:

• [e]R⊥ : R⊥ → R⊥

• [e]I⊥ : I⊥ → I⊥

Example:
∀i ∈ I⊥,∀x ∈ i , π + cos(x) ∈ π + cos(i)

Correctness theorem of interval extensions:

∀e ∈ E , ∀i ∈ I⊥, ∀x ∈ i , [e]R⊥(x) ∈ [e]I⊥(i)

17

Specification of interval extensions

The library implements interval extensions for each elementary function:

• [e]R⊥ : R⊥ → R⊥

• [e]I⊥ : I⊥ → I⊥

Example:
∀i ∈ I⊥,∀x ∈ i , π + cos(x) ∈ π + cos(i)

Correctness theorem of interval extensions:

∀e ∈ E , ∀i ∈ I⊥, ∀x ∈ i , [e]R⊥(x) ∈ [e]I⊥(i)

17

Specification of interval extensions

The library implements interval extensions for each elementary function:

• [e]R⊥ : R⊥ → R⊥

• [e]I⊥ : I⊥ → I⊥

Example:
∀i ∈ I⊥,∀x ∈ i , π + cos(x) ∈ π + cos(i)

Correctness theorem of interval extensions:

∀e ∈ E , ∀i ∈ I⊥, ∀x ∈ i , [e]R⊥(x) ∈ [e]I⊥(i)

17

Formally verified approximations

Initial problem:

∫ b

a

f (x)dx ∈ [m,M] ?

18

Formally verified approximations

Entry in the Catalog:

∫ [eb]R

[ea]R

[ef]Rdx ∈ [m,M] ?

19

Formally verified approximations

Verified computation:

∫ [eb]R

[ea]R

[ef]Rdx

∈
∫ [eb]I

[ea]I

[ef]Idx ⊆ [m,M]

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

20

Formally verified approximations

Verified computation:

∫ [eb]R

[ea]R

[ef]Rdx ∈
∫ [eb]I

[ea]I

[ef]Idx

⊆ [m,M]

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

20

Formally verified approximations

Verified computation:

∫ [eb]R

[ea]R

[ef]Rdx ∈
∫ [eb]I

[ea]I

[ef]Idx ⊆ [m,M]

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

20

Formally verified approximations

Verified computation, using rigorous polynomial approximations:

∫ [eb]R

[ea]R

[ef]Rdx ∈
∫ [eb]TM

[ea]TM

[ef]TMdx ⊆ [m,M]

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

21

Formally verified rigorous computations

∫
0

1

|(x4 + 10x3 + 19x2 − 6x − 6ex |dx ≃ 11.14731055005714

• Octave’s quad/quadgk: only 10/9 correct digits;

• INTLAB verifyquad: false answer without warning;

• VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) ⇒ Removal of the support for the absolute value

22

Formally verified rigorous computations

∫
0

1

|(x4 + 10x3 + 19x2 − 6x − 6ex |dx ≃ 11.14731055005714

• Octave’s quad/quadgk: only 10/9 correct digits;

• INTLAB verifyquad: false answer without warning;

• VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) ⇒ Removal of the support for the absolute value

22

Formally verified rigorous computations

∫
0

1

|(x4 + 10x3 + 19x2 − 6x − 6ex |dx ≃ 11.14731055005714

• Octave’s quad/quadgk: only 10/9 correct digits;

• INTLAB verifyquad: false answer without warning;

• VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) ⇒ Removal of the support for the absolute value

22

Formally verified rigorous computations

The Arb library for arbitrary precision arithmetic
23

Plotting exp(−x2) with sagemath

24

Plotting exp(−x2) with sagemath

24

Plotting exp(−x2) with sagemath

24

Plotting sin(x) for x ∈ [0, 3141]

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	500 	1000 	1500 	2000 	2500 	3000

sin(x)

Gnuplot Sagemath

25

Plotting sin(x) for x ∈ [0, 3141]

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	500 	1000 	1500 	2000 	2500 	3000

sin(x)

Gnuplot

Sagemath

25

Plotting sin(x) for x ∈ [0, 3141]

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	500 	1000 	1500 	2000 	2500 	3000

sin(x)

Gnuplot Sagemath

25

Faithful plotting is hard

Issues:

• Sampling

• Accuracy

• Bugs

Desired properties:

• Correctness: blank pixels are not traversed by the function graph

• Completeness: filled pixels are traversed by the function graph

⇒ Formally verified plots: guarantee correctness and strive for completeness

26

Faithful plotting is hard

Issues:

• Sampling

• Accuracy

• Bugs

Desired properties:

• Correctness: blank pixels are not traversed by the function graph

• Completeness: filled pixels are traversed by the function graph

⇒ Formally verified plots: guarantee correctness and strive for completeness

26

Faithful plotting is hard

Issues:

• Sampling

• Accuracy

• Bugs

Desired properties:

• Correctness: blank pixels are not traversed by the function graph

• Completeness: filled pixels are traversed by the function graph

⇒ Formally verified plots: guarantee correctness and strive for completeness

26

Generating formally verified plots

To obtain a verified plot for f (x) for x ∈ X :

• Partition X in (Xi)i=1...n

• Produce a list (ℓi)i=1...n of intervals

• Ensure (with a formal proof) that for every i = 1 . . . n:

∀x ∈ Xi , f (x) ∈ ℓi

• Fill the corresponding pixels.

Rigorous polynomial approximation make computations efficient enough.

[Plotting in a formally verified way, G. Melquiond, F-IDE 2021]

27

Demo

28

Demo

	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

-10000 -5000 	0 	5000 	10000

Verified plot of exp(−x2) for
x ∈ [−10000, 10000]

-1

-0.5

	0

	0.5

	1

	1.5

	0 	500 	1000 	1500 	2000 	2500 	3000

Verified plot of sin(x) for
x ∈ [0, 3141]

29

Demo

	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

-10000 -5000 	0 	5000 	10000

Verified plot of exp(−x2) for
x ∈ [−10000, 10000]

-1

-0.5

	0

	0.5

	1

	1.5

	0 	500 	1000 	1500 	2000 	2500 	3000

Verified plot of sin(x) for
x ∈ [0, 3141]

29

Contemporary Mathematics

2013: Odd order theorem formally verified

Theorem (W. Feit - J. G. Thompson, 1963)
Every finite group of odd order is solvable.

[A formal proof of the Odd Order theorem, Gonthier et al., Proc. of ITP 2013]

30

2013: Odd order theorem formally verified

Problems:

• Maintenance

• Readability of mathematical statements and proofs scripts

• Performance issues on the interactive prover side

• (Keep the proof constructive)

31

Mathematical notation

• Inference:

Definition det (n : nat) (A : ’M_n[R]) : R := \sum_(s : S_n) (-1) ^+ s * \prod_i A i
(s i)

det(A) =
∑
σ∈Sn

(−1)ϵσ
n∏

i=1

aiσ(i)

• Linguistics

Theorem third_isog (G H K : {group gT}) : H \subset K -> H <| G -> K <| G
-> (G / H) / (K / H) \isog (G / K).

(G/H)/(K/H) ∼ (G/K) when H ⊂ K ,H ◁ G ,K ◁ G

32

From the Odd order theorem to the Mathematical Components library

• types with decidable equality and choice operator

• h-sets and Hedberg theorem

• type classes / unification hints hierarchies

• conversion / small scale reflexion

• enhanced support for forward chaining in the tactic language

• rewrite the mathematics

33

Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

• 2017: Start of mathlib, today Lean’s de facto the standard library
[The Lean Mathematical Library, The mathlib Community, Proc of CPP’2020]

• 2018: Field medal awarded to P. Scholze

• 2019: Definition of perfectoid spaces in Lean
[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’2020]

34

Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

• 2017: Start of mathlib, today Lean’s de facto the standard library
[The Lean Mathematical Library, The mathlib Community, Proc of CPP’2020]

• 2018: Field medal awarded to P. Scholze

• 2019: Definition of perfectoid spaces in Lean
[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’2020]

34

Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

• 2017: Start of mathlib, today Lean’s de facto the standard library
[The Lean Mathematical Library, The mathlib Community, Proc of CPP’2020]

• 2018: Field medal awarded to P. Scholze

• 2019: Definition of perfectoid spaces in Lean
[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’2020]

34

Today: Mathematics in the making

35

Today: Mathematics in the making

• 2017: Start of mathlib, today Lean’s de facto the standard library
[The Lean Mathematical Library, The mathlib Community, Proc of CPP’2020]

• 2018: Field medal awarded to P. Scholze

• 2019: Definition of perfectoid spaces in Lean
[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’2020]

• 2022: Liquid Tensor Experiment: J. Commelin et al.
[Half a year of the Liquid Tensor Experiment: Amazing developments, P. Scholze on the Xena blog, 2021]

36

Today: Mathematics in the making

• 2017: Start of mathlib, today Lean’s de facto the standard library
[The Lean Mathematical Library, The mathlib Community, Proc of CPP’2020]

• 2018: Field medal awarded to P. Scholze

• 2019: Definition of perfectoid spaces in Lean
[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’2020]

• 2022: Liquid Tensor Experiment: J. Commelin et al.
[Half a year of the Liquid Tensor Experiment: Amazing developments, P. Scholze on the Xena blog, 2021]

36

Today: Mathematics in the making

Quoting P. Schölze about the Liquid Tensor experiment:

“(...) This makes the rest of the proof of the Liquid Tensor Experiment
considerably more explicit and more elementary, removing any use of stable
homotopy theory. I expect that Commelin’s complex may become a standard
tool in the coming years.”

“(...) this made me realize that actually the key thing happening is a reduction
from a non-convex problem over the reals to a convex problem over the
integers.”

37

If more mathematicians start using proof assistants

• Publications

• Teaching

• Collaborations

• Creativity

38

If more mathematicians start using proof assistants

• Publications

• Teaching

• Collaborations

• Creativity

38

If more mathematicians start using proof assistants

• Publications

• Teaching

• Collaborations

• Creativity

38

If more mathematicians start using proof assistants

• Publications

• Teaching

• Collaborations

• Creativity

38

G. Huet: “Formal Mathematics in COC is fun”

• Novel community of users of CIC, with different motivations

• Many exciting projects (e.g., P. Massot’s project about sphere eversion)

• Impact on the implementation of interactive provers

• But difficult non-technological questions remain
modularity, hierarchies, isomorphisms,. . .

39

Can we make symbolic computation fast and correct?

Joint work in progress with G. Melquiond et al.

The FRESCO project has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No. 101001995)

40

	Constructive Mathematics
	Computational Mathematics
	Contemporary Mathematics

