Formalizing mathematics, in practice

Workshop in Honour of Thierry Coquand’s 60th Birthday

Assia Mahboubi
August 26th 2022

Inria, LS2N, Université de Nantes, Vrije Universiteit Amsterdam

Thank you

e Mathematics, Algorithms and Proofs (MAP) community
TYPES Summer School, Géteborg 2005

e FORMATH European project 2010-2013

Univalent Foundations of Mathematics IAS Princeton 2012-2013

International Congress of Mathematicians 2022

(@

Welcome to the 2022 Virtual ICM!

1 would like to warmily welcome all participants in this virtual ICM. Organizing this event in a short timeframe, with limited human resources,
has been a very challenging task. | sincerely hope that this effort proves to be successful and that all of you can, as a result, enjoy learning
about the latest developments in mathematics

Carlos E. Kenig, IMU president

ces

s server to interact with the

Program

06w 07 nu 081:|09",2 10 11an 120 130 14w

Al | Room1 Room2 Room3 Room4 Room5 Room6 Room7 Room8 Room9 Room10 Room 11

ooy

O Kevin Buzzard - The rise of formalism in mathematics
Q oom 1
& KevinBuzzard
& Martin Hairer

View Session

o7y Specil
THURSDAY

Georges Gonthier - Computer proofs: teaching computers
mathematics, and conversely

Q Room4

& IritDinur

& Georges Gonthier

View Session

Constructive Mathematics

Coq'’s standard library: transitive closure of a relation

The transitive closure R" of R is the smallest transitive relation containing R.

Coq'’s standard library: transitive closure of a relation

The transitive closure R" of R is the smallest transitive relation containing R.

Constructed as:

+oo
R*=|JR" with Ri=R R.1=RoR"

i=1

Coq'’s standard library: transitive closure of a relation

The transitive closure R" of R is the smallest transitive relation containing R.
Constructed as:

+oo
R*=|JR" with Ri=R R.1=RoR"

i=1

Formalized as:

Inductive clos_trans (x : A) : A -> Prop :=
| t_step (y : A) : R x y -> clos_trans x y
| t_trans (y z : A) : clos_trans x y -> clos_trans y z -> clos_trans x z.

Equality up to permutation

In Coq's (or Agda's) standard library, for an arbitrary type a:

Inductive Permutation : list A -> list A -> Prop :=

| perm_nil: Permutation [] []

| perm_skip x 11 12 : Permutation 11 12 -> Permutation (x :: 11) (x :: 12)

| perm_swap x y 1 : Permutation (y :: x:: 1) (x :: y :: 1)

| perm_trans 1 1’ 1’’ : Permutation 11 12 -> Permutation 12 13 -> Permutation 11 13.

Equality up to permutation

In Coq's (or Agda's) standard library, for an arbitrary type a:

Inductive Permutation : list A -> list A -> Prop :=

| perm_nil: Permutation [] []

| perm_skip x 11 12 : Permutation 11 12 -> Permutation (x :: 11) (x :: 12)

| perm_swap x y 1 : Permutation (y :: x:: 1) (x :: y :: 1)

| perm_trans 1 1’ 1’’ : Permutation 11 12 -> Permutation 12 13 -> Permutation 11 13.

In Mathematical Components, for a type a with decidable equality:

(x _ == : nat -> nat -> bool *)
Definition perm_eq (11 12 : list A) : bool :=

all [pred x | count_mem x 11 == count_mem x 12] (11 ++ 12)

Equality up to permutation

In Coq's (or Agda's) standard library, for an arbitrary type a:

Inductive Permutation : list A -> list A -> Prop :=

| perm_nil: Permutation [] []

| perm_skip x 11 12 : Permutation 11 12 -> Permutation (x :: 11) (x :: 12)

| perm_swap x y 1 : Permutation (y :: x:: 1) (x :: y :: 1)

| perm_trans 1 1’ 1’’ : Permutation 11 12 -> Permutation 12 13 -> Permutation 11 13.

In Mathematical Components, for a type a with decidable equality:

(x _ == : nat -> nat -> bool *)
Definition perm_eq (11 12 : list A) : bool :=

all [pred x | count_mem x 11 == count_mem x 12] (11 ++ 12)

Lemma perm_cat2l 11 12 13 : perm_eq (11 ++ 12) (11 ++ 13) = perm_eq 12 13.
Proof .
apply/permP/permP=> eq23 a; apply/eqP;
by move/(_ a)/eqP: eq23; rewrite !count_cat eqn_add2l.
Qed.

C-CoRN: Coq Repository at Nijmegen

A library for constructive algebra and analysis, started circa 2000.

€« > C O 8 hitpsy//com.cs.runl
4 Importer les marque-pages... @ Débuter avec Firefox § Reviews and Commen.

Coq Repository at Nijmegen

‘The CoRN library has very roughly been developed in the following stages, chronologically

+ Fundamental Theorem of Algebra and the algebraic hierarchy. (Geuvers, Pollack, Wiedijk and Zwanenburg)
Fundamental Theorem of Calculus, closely following the Bishop-Bridges book on Constructive Analysis. (PhD: Cruz-Filipe, advisor: Geuvers)
Program extraction for real comput

ct model of the real numbers (PhD: Niqui, advisor: Geuvers)

nt computation with real numbers and metric spaces (PhD: O'Connor, advisor: Spitters)

. nn integration (O'Connor, Spitters)

« Interface with Coq's standard library reals (Kaliszyk, 0'Connor),

ForMath project (Spitters, Krebbers, van der Weegen, Makarov)
Fast computation inside Coq
Development of the math-classes library using type classes.
Development of a simple ODE-solver.

See the publications section for a longer description.
Publications] [Sources

e Every non-constant single-variable polynomial with complex coefficients
has at least one complex root. (1806)
e The integral of a function provides one of its antiderivatives. (circa 1700)

Structures, setoids, hierarchies

Structures as dependent pairs:

(T,p7): X(x: Type)S x

Or rather, tuples:

Record invType := {sort : Type; inv : sort -> sort; idem : involution inv}

[Telescopic mappings in typed lambda calculus, N. G. de Bruijn (1974, 1991), link]

[Dependently typed records for representing mathematical structure, R. Pollack (2000) link]

https://doi.org/10.1016/0890-5401(91)90066-B
https://link.springer.com/chapter/10.1007/3-540-44659-1_29

Structures, setoids, hierarchies

Quotients as constructive setoids:

Record CSetoid : Type := {

cs_crr : Type;

cs_eq : relation cs_crr; (* equality x ~ y *)

cs_ap : relation cs_crr; (x apartness x # y *)

cs_proof : is_CSetoid cs_crr cs_eq cs_ap} (* constructive setoid axioms *)

Constructive setoid axioms, about apartness:

o irreflexivity: —(x £ x)

e symmetry: (x f y) = (y t x)

e co-transitivity: (x fy) = (x§2z)V(z4y)
e tightness: =(x y) < (x ~ y)

http://www.cs.ru.nl/~freek/pubs/alghier1.ps.gz

Structures, setoids, hierarchies

Quotients as constructive setoids:

Record CSetoid : Type := {

cs_crr : Type;

cs_eq : relation cs_crr; (* equality x ~ y *)

cs_ap : relation cs_crr; (x apartness x # y *)

cs_proof : is_CSetoid cs_crr cs_eq cs_ap} (* constructive setoid axioms *)

Constructive setoid axioms, about apartness:

irreflexivity: —(x f x)

symmetry: (x fy) = (v f x)
co-transitivity: (x fy) = (xf z)V(z4y)

tightness: =(x fy) & (x ~y) 7

“However ... we wanted the notion of constructive setoid to be a refinement of
the notion of setoid.”

[A Constructive Algebraic Hierarchy in Coq, H. Geuvers, R. Pollack, F. Wiedijk, J. Zwanenburg, JSC (2002), link]

http://www.cs.ru.nl/~freek/pubs/alghier1.ps.gz

Structures, setoids, hierarchies

Coercion (explicit subtyping) based inheritance:
Record CRing : Type :=
{ cr_crr :> CGroup;

cr_ome : cr_crr;

Cr_zero : Cr_crr;

cr_mult: CSetoid_bin_opp cr_crr;

cr_proof : is_CRing cr_crr cr_one cr_mult}

where cr_crr : CRing -> CGroup is a coercion.

http://arxiv.org/abs/1106.3448/
http://dx.doi.org/10.1017/S0960129511000119

Structures, setoids, hierarchies

Coercion (explicit subtyping) based inheritance:

Record CRing : Type :=
{ cr_crr :> CGroup;
cr_ome : cr_crr;
Cr_zero : Cr_crr;
cr_mult: CSetoid_bin_opp cr_crr;
cr_proof : is_CRing cr_crr cr_one cr_mult}

where cr_crr : CRing -> CGroup is a coercion.

Later improved by a type class based hierarchy (MathClasses).

[Type Classes for Mathematics in Type Theory, B. Spitters, E. van der Weegen, MSCS (2011), link]

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, LMCS (2013), link]

http://arxiv.org/abs/1106.3448/
http://dx.doi.org/10.1017/S0960129511000119

Computable real numbers

e Computable real numbers a la Bishop - Bridges

A dic, functional impl ion of real bers, R. O'Connor, 2007, MSCS, link]

e Connection with Coq's standard library for classical reals

A dic, fi ional impl ion of real bers, C. Kaliszyk, R. O'Connor, 2009, JFR. link]

e Speed up using machine integers, expanded and better structured

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

10

https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computable real numbers

e Computable real numbers a la Bishop - Bridges

A dic, functional impl ion of real bers, R. O'Connor, 2007, MSCS, link]

e Connection with Coq's standard library for classical reals

A dic, fi ional impl ion of real bers, C. Kaliszyk, R. O'Connor, 2009, JFR. link]

e Speed up using machine integers, expanded and better structured

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.

10

https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computable real numbers

e Computable real numbers a la Bishop - Bridges

A dic, functional impl ion of real bers, R. O'Connor, 2007, MSCS, link]

e Connection with Coq's standard library for classical reals

A dic, fi ional impl ion of real bers, C. Kaliszyk, R. O'Connor, 2009, JFR. link]

e Speed up using machine integers, expanded and better structured

[Type classes for efficient exact real arithmetic in Coq, R. Krebbers, B. Spitters, 2013, LMCS, link]

Lemma ground_ineq : 0.41078129 < sin E. Proof. <immediate>. Qed.

Computed 25 decimals of sine(e) in 0.1s, 500 decimals in 1.9s.

10

https://doi.org/10.1017/S0960129506005871
https://jfr.unibo.it/article/view/1411/932
https://lmcs.episciences.org/958

Computational Mathematics

2006: Verified four color theorem

e First (computer-aided) proof: W. Appel and K. Haken, 1976
e Formally verified proof: G. Gonthier, with B. Werner, 2006

e Uses (optimized) computation inside logic

akil,

https://www.ams.org/notices/200811/tx081101382p.pdf

2006: Verified four color theorem

e First (computer-aided) proof: W. Appel and K. Haken, 1976
e Formally verified proof: G. Gonthier, with B. Werner, 2006

e Uses (optimized) computation inside logic

Variable (m : map R).

Theorem four_color_finite : finite_simple_map m -> colorable_with 4 m.
Proof .

intros fin m.

pose proof (discretize.discretize_to_hypermap fin_m) as [G planarG colGl.
exact (colG (combinatorialédct.four_color_hypermap planarG)) .

Qed.

Theorem four_color : simple_map m -> colorable_with 4 m.
Proof. exact (finitize.compactness_extension four_color_finite). Qed.

[Formal Proof—The Four-Color Theorem, G. Gonthier (2008) link]

akil,

https://www.ams.org/notices/200811/tx081101382p.pdf

2006: Verified four color theorem

e Verification of the non-trivial computational part of the proof

Formalization of a corpus of modern combinatorics

Formal proof engineering methodology

Novel/rediscovered mathematics

12

Handbooks

a
@ﬁa LMFDB - The L-functions and Modular Forms Database

Introduction
Overview Random
Universe Knowledge
Litunctions

Rational Al

Modular forms.

Classical Maass
Hilbert Bianchi
Varieties.

Elliptic curves over
Elliptic curves over Q(a: a
Genus 2 curves over o
Higher genus families.
Abelian varieties over
Fields.

Number fields

padic fields
Representations

Dirichlet characters

A database Hall of fame

The LMFDE is an extensive database of
mathematical objects arising in Number Theory.

Riemann zeta function
Ramanujan A function and its L-function
€277 and its L-function

of Gauss eliptic curve and its L-function
Grand Canyon L-function

‘Sample lsts: L-functions, Eliptic curves, Tabl
zeros, Number fields

Search and browse Visualize data

‘Search for objects with specific properties, or browse
categories.

Explore individual plots or view distributions of various
objects.

Browse: Lfunctions, Modular forms, Eliptic curves,
Number fields

Examples: GL(4) Level one Maass forms, Isogeny
graph of elliptic curve 102.c

See a random object from the database

Explore and learn B 1 cmuony.

2

Code and open software

The LMFDB makes visible the connections predicted scsiasssnt (). feetc Download the data, download the code, or see how

Atin representations - 0
- by the Langlands program. Knowis offer background unn the data was generated.
Groups N Informaton when you need . o
. " Gitub SageMah PaiGP Magma Pyinon
Galois groups LMFDB universe Knowledge. BB = Z
Sato-Tate groups
the UK Enginseting

Contact - Cittion - Acknowledgmens - Editorial Board - Source - SageMath version 9.2 - LMFDB Release 1.2.1

Feedback - Hide Menu

'3}

Handbooks

{mFDB

Introduction
Overview Random
Universe Knowledge
Litunctions

Rational Al

Modular forms.

Classical Maass
Hilbert Bianchi
Varieties.

Elliptic curves over
Ellptic curves over Q(a:
Genus 2 curves over
Higher genus families

Abelian varieties over

a
LMFDB - The L-functions and Modular Forms Database

A database
The LMFDE is an extensive database of
mathematical objects arising in Number Theory.

‘Sample lsts: L-functions, Eliptic curves, Tables of
zeros, Number fields

Search and browse
‘Search for objects with specific properties, or browse
categories.

Browse: Lfunctions, Modular forms, Eliptic curves,
Number fields

See a random object from the database

Feedback - Hide Menu

Hall of fame

Riemann zeta function
Ramanujan A function and its L-function
€277 and its L-function

Gauss eliptic curve and s L-function
Grand Canyon L-function

Visualize data
Explore individual piots or view distributions of various
objects.

Examples: GL(4) Level one Maass forms, Isogeny
graph of elliptic curve 102.c

Integral points

These were computed rigorously, using independent implementations in Magma and SageMath which were compared as a consistency check.

o
Groups.

Galois groups.

Sato-Tate groups.

by the Langlands program. Knowis of groun
information when you need it

s
R 1.5 ot

LMFDB unverse Knowledge b - 2

the

151

the data was generated.

GitHub SageMath PariGP Magma Python

Contact - Cittion - Acknowledgmens - Editorial Board - Source - SageMath version 9.2 - LMFDB Release 1.2.1

'3}

Handbooks

Feedback - Hide Menu

MFD!

a
LMFDB - The L-functions and Modular Forms Database

Introduction = A database Hall of fame
Overview Random
e = The LMFDE is an extensive database of Riemann zeta function

T mathematical objects arising in Number Theory. Ramanujan A function and its L-function
Lefunctions. (G €277 and its L-function

~ 1 samplelists: L-functions, Eliptic curves, Tables of Gauss eliptic curve and its L-function

Ratonal Al < s zeros, Number fields Grand Canyon L-function
Modular forms. :
Classical Maass
Hilbert Bianchi
Varieties Search and browse Visualize data
Elliptic curves over g

‘Search for objects with specific properties, or browse
categories.

Explore individual plots or view distributions of various
objects.

Elliptic curves over Q(a: a
Genus 2 curves over o
Browse: Lfunctions, Modular forms, Eliptic curves,

Examples: GL(4) Level one Maass forms, Isogeny
on Number fields

graph of elliptic curve 102.c

Higher genus families.

Abelian varieties over

See a random object from the database
Lol

Integral points

These were computed rigorously, using independent implementations in Magma and 1 which were as a consistency check.
-
by the Langlands program. Knows of groun the data was generated.
Groups information when you need it

GitHub SageMath PariGP Magma Python
Galois groups.

LMFDB universe ~ Knowledge
Sato-Tate groups.

the UK Engineering
Contact - Cittion - Acknowledgmens - Editorial Board - Source - SageMath version 9.2 - LMFDB Release 1.2.1

Today, no explicit policy exist for auditing software that produce proof steps.

'3}

Cross-verification is not enough

In SymPy 1.5.1 *, compare

1 >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})

1Example suggested by F. Johansson.

14

Cross-verification is not enough

In SymPy 1.5.1 *, compare

1 >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})

1Example suggested by F. Johansson.

14

Cross-verification is not enough

In SymPy 1.5.1 *, compare

1 >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})
E
= Post-hoc verification techniques cannot apply.
Wolfram Language (Mathematica) exhibit the exact same phenomenon.

= Cross-verification is not enough.

1Example suggested by F. Johansson.
14

Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)

Every odd integer greater than 5 is the sum of three primes.

15

Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)

Every odd integer greater than 5 is the sum of three primes.

MAJOR ARCS FOR GOLDBACH'S PROBLEM 35
By Cauchy-Schwarz, this is at most
2 | ~loico L(s,x) s

By @I2),

1
/—5+zm
1o

2

2 L4
L b

lds| - \| 5 / IG5(s)sl” |ds|
T f—ico

L'(s,%) *

112 p— §+ico
-l |ds| < /
L(s,x) 5| e —1ico

logg
s

[ds]

. /w |3 log (72 + §) +4.1396 + log|* |
. 1472
< V2mlogq + v226.844,

where we compute the last integral nmncrica.llyﬂ

4By a rigorous integration from T = —100000 to 7 = 100000 using VNODE-LP [Ned06],
which runs on the PROFIL/BIAS interval arithmetic package[Knii99].

15

Formally verified rigorous computations

Ternary Goldbach conjecture is true (H. Helfgott, 2013)

Every odd integer greater than 5 is the sum of three primes.

MAJOR ARCS FOR GOLDBACH'S PROBLEM 35
By Cauchy-Schwarz, this is at most
2 | ~loico L(s,x) s

By @I2),

1
/—5+zm
1o

2

2 L4
L b

lds| - \| 5 / IG5(s)sl” |ds|
T f—ico

L'(s,%) *

112 p—§+ico
-l |ds| < /
L(s,x) 5| e —1ico

logg
s

[ds]

. /w |3 log (72 + §) +4.1396 + log|* |
. 1472
< V2rlogq+ v226.844,

where we compute the last integral nmncrica.llyﬂ

4]3y a rigorous integration from 7 = —100000 to 7 = 100000 using VNODE-LP [Ned06],
which runs on the PROFIL/BIAS interval arithmetic package[Knii99).

e This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

15

Catalog of univariate elementary functions

Described by an abstract syntax:

E = x|F|n|
E+E|E-C|EXE|IEFE| =€ ||
VE | €|
cos(&) | sin(€) | tan(€) | atan(€) |
exp(€) | In(&)

16

Specification of interval extensions

The library implements interval extensions for each elementary function:

° [e]ﬂh o R — R,
° [e]]u I — 1,

17

Specification of interval extensions

The library implements interval extensions for each elementary function:

° [e]ﬂh : Ry - Ry
) [e]]u : HL*)HL

Example:
Viel,,Vx €i, w4 cos(x)¢€ m+ cos(i)

17

Specification of interval extensions

The library implements interval extensions for each elementary function:

° [e]ﬂh : Ry - Ry
) [e]]u : HL*)HL

Example:
Viel,,Vx €i, w4 cos(x)¢€ m+ cos(i)

Correctness theorem of interval extensions:

Vee EViel ,Vxei, [e]r, (x) € [e]li, (1)

17

Formally verified approximations

Initial problem:

b
/ f(x)dx € [m,M] 7

18

Formally verified approximations

Entry in the Catalog:

[en]r
/ [erlrdx € [m, M] ?

[ealr

19

Formally verified approximations

Verified computation:

[en]r
/ [er]rd

[ea]r

20

Formally verified approximations

Verified computation:

[en]r [eplr
/ [er]rdx € / [er]udx
. [

[ea]r ealr

20

Formally verified approximations

Verified computation:

[ep]r [ep]r
/ [ef]rdx € / [erludx C [m, M]
° [

[ea]r ealr

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

20

Formally verified approximations

Verified computation, using rigorous polynomial approximations:

[en]r [en]
/ [er]rax € / [er] 1 dx C [m, M]
[ea]

[ealr
[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]

21

Formally verified rigorous computations

1
/ |(x* +10x> +19x* — 6x — 6€”|dx ~ 11.14731055005714
0

22

Formally verified rigorous computations

1
/ |(x* +10x> +19x* — 6x — 6€”|dx ~ 11.14731055005714
0

e Octave's quad/quadgk: only 10/9 correct digits;
e INTLAB verifyquad: false answer without warning;

e VNODE-LP: cannot be used because of the absolute value.

22

Formally verified rigorous computations

1
/ |(x* +10x> +19x* — 6x — 6€”|dx ~ 11.14731055005714
0

e Octave's quad/quadgk: only 10/9 correct digits;
e INTLAB verifyquad: false answer without warning;

e VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) = Removal of the support for the absolute value

22

Formally verified rigorous computations

arb_sqrt(arb_t z, const arb_t x, slong prec)

{
mag_t rx, zr;
int inexact;
if (mag_is zero(arb_radref(x)))
{
arb_sqrt_arf(z, arb_midref(x), prec);
¥
else if (arf_is_special(arb_midref(x)) ||
arf_sgn(arb_nidref (x)) < 0 || mag_is_inf(arb_radref(x)))
{
65 1f (arf_is pos_inf(arb_midref(x)) & mag is finite(arb_radref(x}))
arb_sqrt_arf(z, arb_midref(x), prec);
else
68 arb_indeterninate (z);
1
else h mid and rad are non values, nid > @
7 {
72 slong acc;
74 acc = _fmpz_sub_small (ARF_EXPREF(arb_nidref(x)), MAG_EXPREF(arb_radref(x)));
75 FLINT_MIN(acc, prec);
76 prec = FLINT_MIN(prec, acc + NAG BITS);
7 prec = FLINT_MAX(prec, 2);
if (acc < @)
arb_indeterninate(z);
}
else if (acc <= 20)
84 {
85
mag_init(t);
88 mag_init(u);

arb_get_mag_lower (t, x);

if (mag_is_zero(t) && arb_contains_negative(x))

{

The Arb library for arbitrary precision arithme

23

Plotting exp(—x?) with sagemath

24

Plotting exp(—x?) with sagemath

0.8 1

0.6

0.4 1

0.2

T — T — T T — — T — T T — T
-1000 -500 500 1000

24

Plotting exp(—x?) with sagemath

0.5 4

T T T T
-10000 -5000] 5000 10000

0.5 7

24

Plotting sin(x) for x € [0,3141]

25

Plotting sin(x) for x € [0,3141]

Gnuplot

25

Plotting sin(x) for x € [0,3141]

—— e
® ﬁ\ ,‘\ il ‘\
S x

AN A
ARANA |
&= w

L] \

|) \
T [l ﬂ
o4 \ " | | \
os ‘\ | [l "
| | | \ |
\U/ \/ ‘v’ \/ \ |
Gnuplot

} M
Hl |

Sagemath

25

Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs

26

Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs
Desired properties:

e Correctness: blank pixels are not traversed by the function graph

e Completeness: filled pixels are traversed by the function graph

26

Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs
Desired properties:

e Correctness: blank pixels are not traversed by the function graph

e Completeness: filled pixels are traversed by the function graph

= Formally verified plots: guarantee correctness and strive for completeness

26

Generating formally verified plots

To obtain a verified plot for f(x) for x € X:

Partition X in (Xi)i=1...n

Produce a list (¢;)i=1..., of intervals

Ensure (with a formal proof) that for every i =1...n:

Vx € Xi, f(x) € ¢

Fill the corresponding pixels.

Rigorous polynomial approximation make computations efficient enough.

[Plotting in a formally verified way, G. Melquiond, F-IDE 2021]

27

File Edit Options Buffers Tools

QOstate COContext BWGoal K Retract @ Undo BNext ¥ Use bdGoto

Require Inport Re:

From Coquelicot Require Import Coquelicot.

Require Import Interval.Tact
Open Scope R_scope

Definition plotl := ltac:(plot
Definition plot2 := ltac:(plot
>Plot plot1
Plot plot2
~i--- demo.v Top L32

emacs@tepoztian

Coq ProofGeneral Holes Help

nterval.Plot

(fun x => exp (-x * x)) (-10000)

(Coa script(e-) H

flhHome _CFind

goals

*responsex

@it

1%Command

A Prooftree

28

nnnnnnnnnnnnnnnnnnnn

Verified plot of exp(—x?) for
x € [—10000, 10000]

29

Verified plot of exp(—x?) for Verified plot of sin(x) for
x € [~10000, 10000] x € [0,3141]

29

Contemporary Mathematics

2013: Odd order theorem formally verified

Theorem (W. Feit - J. G. Thompson, 1963)
Every finite group of odd order is solvable.

AYOIHL SIOTV) niasunoov

[A formal proof of the Odd Order theorem, Gonthier et al., Proc. of ITP 2013]

30

2013: Odd order theorem formally verified

Problems:

e Maintenance

Readability of mathematical statements and proofs scripts

e Performance issues on the interactive prover side

(Keep the proof constructive)

31

Mathematical notation

e Inference:

Definition det (n : nat) (A : ’M_n[R]) : R := \sum_(s : S_n) (-1) "+ s * \prod_i A i
(s 1)

det(A) = Z (=1)~ H Aio (i)
ocES, i=1
e Linguistics

Theorem third_isog (G H K : {group gT}) : H \subset K -> H<| G -> K <| G
-> (G / H / K/ H \isog (G / K).

(G/H)/(K/H) ~ (G/K) when HC K,H<4G,K<G

32

From the Odd order theorem to the Mathematical Components library

e types with decidable equality and choice operator

e h-sets and Hedberg theorem

e type classes / unification hints hierarchies

e conversion / small scale reflexion

e enhanced support for forward chaining in the tactic language

e rewrite the mathematics

33

Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

34

Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

e 2018: Field medal awarded to P. Scholze

34

Today: Mathematics in the making

Lean is an interactive prover based on the Calculus of Inductive Constructions.

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

e 2018: Field medal awarded to P. Scholze
e 2019: Definition of perfectoid spaces in Lean

[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’'2020]

34

Today: Mathematics in the making

parameter (p : primes)

/-- A perfectoid ring is a Huber ring that is complete, uniform,

that has a pseudo-uniformizer whose p-th power divides p in the power bounded subring,
and such that Frobenius is a surjection on the reduction modulo p.-/

structure perfectoid ring (R : Type) [Huber_ring R] extends Tate ring R : Prop :=
(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : 3 @ : pseudo_uniformizer R, wAp | p in Re)

(Frobenius : surjective (Frob Re/p))

/-- Condition for an object of CLVRS to be perfectoid: every point should have an open
neighbourhood isemorphic to Spa(A) for some perfectoid ring A.-/
def is perfectoid (X : CLVRS) : Prop :=
¥ x : X, 3 (U : opens X) (A : Huber_pair) [perfectoid ring A],
(x € U) A (Spa A = U)

/-- The category of perfectoid spaces.-/
def PerfectoidSpace := {X : CLVRS // is_perfectoid X}

end

35

Today: Mathematics in the making

e 2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]
e 2018: Field medal awarded to P. Scholze

e 2019: Definition of perfectoid spaces in Lean

[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’'2020]

36

ay: Mathematics in the making

2017: Start of mathlib, today Lean's de facto the standard library

[The Lean Mathematical Library, The mathlib Community, Proc of CPP’'2020]

2018: Field medal awarded to P. Scholze

2019: Definition of perfectoid spaces in Lean

[Formalizing perfectoid spaces - K. Buzzard, J. Commelin, P. Massot, Proc. of CPP’'2020]

2022: Liquid Tensor Experiment: J. Commelin et al.

[Half a year of the Liquid Tensor Experiment: Amazing developments, P. Scholze on the Xena blog, 2021]

36

Today: Mathematics in the making

Quoting P. Scholze about the Liquid Tensor experiment:

“(...) This makes the rest of the proof of the Liquid Tensor Experiment
considerably more explicit and more elementary, removing any use of stable
homotopy theory. | expect that Commelin's complex may become a standard
tool in the coming years.”

“(...) this made me realize that actually the key thing happening is a reduction
from a non-convex problem over the reals to a convex problem over the
integers.”

37

If more mathematicians start using proof assistants

e Publications

38

If more mathematicians start using proof assistants

e Publications

e Teaching

38

If more mathematicians start using proof assistants

e Publications
e Teaching

e Collaborations

38

If more mathematicians start using proof assistants

Publications

e Teaching

Collaborations

Creativity

38

G. Huet: “Formal Mathematics in COC is fun”

Novel community of users of CIC, with different motivations
e Many exciting projects (e.g., P. Massot's project about sphere eversion)

e Impact on the implementation of interactive provers

But difficult non-technological questions remain
modularity, hierarchies, isomorphisms,. ..

39

Can we make symbolic computation fast and correct?

Joint work in progress with G. Melquiond et al.

Computer-
Existential Prodrijced cic
Properties Mathematics

) High
Gallina

’ Gallina
Low
i) Gk Gallina

Generated Code

Machine Code
Interfaced

Foreign
Functions

The FRESCO project has received funding from the European Research Council (ERC) under the European

Union's Horizon 2020 research and innovation programme (grant agreement No. 101001995)

40

	Constructive Mathematics
	Computational Mathematics
	Contemporary Mathematics

