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The Plan of the Talk

This is a survey talk about almost a decade of work on
constructivization of mathematics of S. Berardi, M. Bezem, D.
Fridlender, under the guide of T. Coquand.

1 We first discuss the constructive interpretations of proofs
using Excluded Middle and Choice, with a motivating
example: Higman Lemma, a classical existence proof
using choice axiom, whose constructive content was
investigated in Fridlender’s ph.d. thesis ([5]) supervised by
T. Coquand.

2 Then we outline Coquand’s game theoretical constructive
interpretation of proofs ([4]).

3 Eventually, we sketch how this game interpretation was
translated into a Realization interpretation of Excluded
Middle and Choice by T. Coquand, S. Berardi and M.
Bezem ([6]).
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§ 1. Constructive interpretations of proofs using
Excluded Middle and Choice,

with a motivating example: Higman Lemma.
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We had more than one century of constructive
reasoning . . .

Figure: Hilbert Constructivization Conjecture (Courtesy from
Goettingen State and University Library, Germany. Thanks to
Susumu Hayashi for finding it, and to Benedikt Ahrens for translating).

The first known version (around 1917) of the following
Constructivization Conjecture by Hilbert:

”Prove the following theorem: When a proof of existence
has been concluded in mathematics, then also the

decision (in a finite number of steps, as one says) is
always possible. ”
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Some Well-Known Facts about Hilbert
Constructivization Conjecture

1 Turing proved that the original Hilbert conjecture is false.
2 Consider the following existence proof: for every

computation of a Turing machine there is a boolean, which
is ”true” if the computation terminates and ”false” if it runs
forever.

3 Turing proved that there is no computable map taking a
computation and deciding whether it runs forever.
Therefore there is no construction for this (obvious) proof
of existence.
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More Well-Known Facts about Hilbert
Constructivization Conjecture

1 Hilbert conjecture’s was restricted to the proofs of
existence of some object with a decidable property.

2 In this form, it was proved true for plenty of formal systems
for mathematics.

3 We will call any of such results a constructive
interpretation for the formal system.

4 As example, we consider Spector Bar-Recursion [2] is an
interpretation for Second Order Arithmetic with Excluded
Middle and Choice, extending Kreisel Dialectica
Interpretation for First Order.
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The constructive interpretation of the axiom of choice
The axiom of choice says that if ∀x ∈ I.∃y ∈ J.P(x , y), then
there is a choice map f , taking any x ∈ I and selecting some
y = f (x) ∈ J such that P(x , y). The axiom of choice is a central
tool in mathematical proof, but its constructive interpretation is
difficult.

1 In constructive mathematics, the Axiom of Choice is
validated by the Brouwer-Heyting-Kolmogorov explanation
of the logical constants.

2 In constructive mathematics, Choice maps f are
interpreted by the construction hidden in the proof of
∀x ∈ I.∃y ∈ J.P(x , y).

3 If we have Excluded Middle, choice maps are often non
effectively computable and therefore are not constructions.
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Higman Lemma: A motivating Example for Interpreting
Classical Choice

We state a miniature version of Higman’s Lemma [1], an
existence statment whose original proof used Classical Second
Order Arithmetic and Choice Axiom. Assume that Σ is any finite
alphabet and w ,w ′ are words over Σ.

1 An embedding f : w → w ′ is an increasing map from
{1, . . . ,l(w)} to {1, . . . ,l(w ′)}, such that wi = w ′

f (i) for all
i = 1, . . . ,l(w). In this case we write w ≤ w ′.

2 An infinite sequence of words σ = w0,w1,w2, . . . over Σ is
good if for some i < j we have wi ≤ wj . Otherwise σ is bad.

3 For instance, if σn = ⟨⟩ for some n ∈ N then σn ≤ σn+1 and
σ is good. If σ is bad then σn ̸= ⟨⟩ for all n ∈ N.

4 Higman’s Lemma (miniature version!) [1]. All infinite
sequences of words over Σ are good.
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A motivating Example: Higman’s Lemma

Embedding f : w → w′

Good Sequence
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There is no minimal bad sequence (Classical Proof)

We write σ < τ for: for some n ∈ N we have
l(σ0) = l(τ0), . . . ,l(σn−1) = l(τn−1) and l(σn) < l(τn).

1 Claim: there is no minimal for < bad sequence of words on
Σ.

2 Given σ = {σn}n∈N bad, we have σn = anτn for some
sequence {an}n on Σ and some sequence of words τ .

3 Since Σ is finite, there is some a ∈ Σ and some
sub-sequence ain = a for all n ∈ N.

4 Let σ|a = σ0, . . . , σi0−1, τi0 , τi1 , . . .. Then σ|a < σ. By case
analysis, if σ is bad then σ|a is bad.

5 This is a non-constructive existence proof: there is no way
of computing a out of σ, therefore no way of computing σ|a
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The constructive content of Higman’s Lemma

C. Murthy and J. Russel wrote a constructive proof of Higman
Lemma in 1989 ([3]), and H. Herbeling extracted a program out
of it. Then T. Coquand proposed an inductive version of this
constructive proof and his ph.d. student D. Fridlender extracted
a simpler program out of it ([5]).

1 A constructive interpretation of Higman’s Lemma is a
construction taking the sequence σ and returning i < j
such that wi ≤ wj .

2 The construction should depend on the ideas in the proof
and in general be different from blind search through all
pairs i , j .

3 The main obstacle in interpreting the proof is the combined
use of Excluded Middle and Choice.
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A proof of Higman Lemma using Classical Choice

Assume there is some bad sequence in order to derive a
contradiction.

1 We already proved that there is no minimal bad sequence.
If we are able to define a minimal bad sequence we get the
desidered contradiction.

2 Given a bad sequence, we can define the minimal bad
sequence using choice.

3 We choose any word w0 of shortest length among those
which are the first word of a bad sequence.

4 We choose any word w1 of shortest length among those
which are the second word of a bad sequence whose first
word is w0.

5 We define in this way a sequence σ = w0,w1,w2, . . ..
6 We easily check that σ is bad and minimal among bad

sequences, contradiction.
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3 We choose any word w0 of shortest length among those
which are the first word of a bad sequence.
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which are the second word of a bad sequence whose first
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Is Choice required to prove Higman Lemma ?

As it is often the case in mathematical proofs, Choice is not
really required but it is useful to have.

1 Whenever we have to choose some word w with a given
property P, we can choose the smallest w in the
lexicographic order such that P(w).

2 In this was the choice map can be defined and proved total
using Excluded Middle only.

3 However, the extra criterion making the choice unique has
nothing to do with the proof.

4 In the constructive interpretation, the extra criterion
requires a large overhead of work. It is not enough to
provide some w such that P(w), we have to try several w
such that P(w) in order to find the the smallest such w in
the lexicographic order.
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The construction in Higman Lemma

In the particular case of Higman Lemma, the following
construction was found in [5].

1 Assume σ is any infinite sequence of words on a finite
alphabet Σ. For x ∈ Σ, let σx be defined as in the slide
”There is no minimal bad sequence”.

2 We compute (in interleaving) all decreasing chains
σ > σ|a > (σ|a)|b > ((σ|a)|b)|c > . . . for any
a,b, c, . . . ∈ Σ, trunking at the same finite prefix of σ.

3 We stop when we find some subsequence ((σ|a)|b)|. . .
with an empty word followed by some word.

4 We have an embedding in ((σ|a)|b)|. . . and we define an
embedding in σ from it.

5 We prove termination for this algorithm either directly, or
from the general properties of the interpretation we are
using.
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§ 2. A costructive game interpretation of
Excluded Middle and Choice
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Coquand game theoretical interpretation of classical
choice, by trial-and-error

In [4], Coquand interprets the truth of any disjuntion on a list
Γ = A1, . . . ,An of closed second order arithmetical formulas
through a game between Eloise, asserting the truth of some
Ai ∈ Γ, and Abelard, asserting the falsity of all Ai ∈ Γ.

1 Eloisa chooses either some disjunctive
Ai = Ai,1 ∨ Ai,2,∃x .B, then some instance Ai,j ,B[j/x ] and
asserts it to be true, or

2 Eloise chooses some conjunctive Ai = Ai,1 ∧ Ai,2, ∀x .B,
and in this case Abelard choose some instance Ai,j ,B[j/x ]
and asserts it to be false.
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What is new in Coquand’s game theoretical
interpretation

The difference with the usual interpretation is that Eloise (not
Abelard) can suspend the attempt to assert Ai and can switch
to another Aj , using the experience gathered in defending Ai in
order to better defend Aj . This operation is called backtracking.

1 Eloise can resume any suspended attempt from the
sub-formula in which she suspended it.

2 Eloisa wins if eventually she asserts the truth of a true
closed atomic formula, otherwise Abelard wins.

3 Any proof with Excluded Middle can be interpreted by a
winning strategy for Eloise.

4 This is a constructive interpretation of Excluded Middle,
that is, an effective interpretation for proofs of existences of
objects with a decidable property.
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Coquand’s game theoretical interpretation and Choice

Eloise has a winning strategy for the Axiom of Choice
∀x .∃y .P(x , y) → ∃f .∀x .P(x , f (x)).

1 By classical logic, the Axiom of Choice is written
Γ,∃x .∀y .¬P(x , y),∃f .∀x .P(x , f (x)).

2 Eloise’s goal is finding some xi , fi such that Abelard asserts
both ¬P(xi , fi(xi) and P(xi , fi(xi)). This is an instance of
Excluded Middle: eventually, Eloise will apply a winning
strategy for Classical Login and she wins.

3 Eloise first chooses ∃f .∀x .P(x , f (x)), then f = f0, any
dummy map. Abelard chooses some x0 and asserts that
P(x0, f0(x0)) is false.

4 Eloise changes her choice to ∃x .∀y .¬P(x , y), then
∀y .¬P(x0, y), and Abelards asserts that ¬P(x0, y0) is false.
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1 Eloise redefines f0 to f1(x) = if x = x0 then y0 else f0(x)
and restarts the cycle, choosing ∃f .∀x .P(x , f (x)), then
f = f1.

2 Abelard chooses some x1 and asserts that P(x1, f1(x1)) is
false. Eloise changes her choice to ∃x .∀y .¬P(x , y), then
∀y .¬P(x1, y), and Abelards asserts that ¬P(x1, y1) is false.

3 In this way Abelards asserts a list of P(xi , fi(xi)) and of
¬P(xi , yi), where fi(xj) = yj for j < i .

4 By a continuity argument we have xi+1 = xi for some i ,
therefore Abelards asserts both ¬P(xi , yi) and
P(xi+1, fi+1(xi+1)) = P(xi , fi+1(xi)) = P(xi , yi). Now Eloise
is able to win using a winning strategy for Excluded Middle.

5 This game interpretation can be translated into the
programming language P.
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P(xi+1, fi+1(xi+1)) = P(xi , fi+1(xi)) = P(xi , yi). Now Eloise
is able to win using a winning strategy for Excluded Middle.

5 This game interpretation can be translated into the
programming language P.

S. Berardi On the Computational Content of the Axiom of Choice



§3. A game interpretation of Excluded Middle
and Choice translated into a Realization

interpretation for the same principles
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The paper ”On the computational content of the axiom
of choice”

This is a 1996 paper by by S.Berardi, M.Bezem and T.Coquand
[6].

1 The two main interpretations for classical choice at the
time were Godel’s Dialectica interpretation and Bar
Recursion [2].

2 Coquand’s interpretation is computationally more direct
than Godel’s Dialectica interpretation, and the resulting
algorithm, based on trial-and-error game interpretation of
classical logic, is more intuitive than Bar Recursion.
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Coquand’s interpretation of Choice [6]

We start defining a programming language P for interpreting
the constructions of higher-order-constructive arithmetic HAω.

1 Types are N,Unit,Abs and with τ, τ ′ also τ → τ ′, τ × τ ′

(cartesian product) and [τ ] (lists over type τ ).
2 constants Rτ for primitive recursion of type τ , () : Unit ,

Dummy : Abs, Axiom1,Axiom2 : N → Abs, constants for
general recursion (fixpoint combinators of all appropriate
types) and constants for pairing and projection and list
construction and destruction.

3 The term (get x l a) searches the list l for the first triple
whose first component matches x ; if such a triple is found,
then f is applied to the second and third component of the
triple, otherwise the output is a.
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The Realization Interpretation for costructive proofs

There is a mapping ϕ from formulas ϕ of HAω to types |ϕ| of P.
Any proof p : ϕ of HAω is turned into a term |p| : |ϕ| of P,
representing its constructive content.

1 |M = M ′| = Unit
2 |⊥| = Abs
3 |ϕ→ ψ| = |ϕ| → |ψ|
4 |ϕ ∧ ψ| = |ϕ| ∧ |ψ|
5 ∀x : τϕ = τ → |ϕ|
6 ∃x : τϕ = τ ∧ |ϕ|
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The Realization Interpretation for proofs with Excluded
Middle

1 We use negative interpretation for classical logic. We
replace each ∨,∃ in each formula in the proof with ¬¬∨,
¬¬∃. If we start from an existence proof of an object with a
decidable property, say a proof of ∃xf (x) = 0, we obtain a
proof p of ¬¬∃xf (x) = 0, then of

¬∀x(f (x) = 0 → ⊥)

2 We define a realizer of ∀x(f (x) = 0 → ⊥) from axiom1:

r = λx ,h. if f (x) = 0 then axiom1(x) else dummy

We prove that p(r) : ⊥ reduces to some axiom1(n) such
that f (n) = 0. That is, we provided a construction returning
some n such that f (n) = 0.
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The Realization Interpretation for proofs with Excluded
Middle and Choice

We have to define a realizer r for the negative interpretation of
choice: ∀x .¬¬∃y .¬ϕ(x , y) → ¬¬∃f .∀x .¬ϕ(x , f (x)). r translates
Eloise’s winning strategy for classical logic into lambda
calculus.

1 r takes a finite list l of triples ⟨xi , yi ,qi⟩ with q realizer of
¬ϕ(x , y), a realizer p of ¬¬∃y .¬ϕ(x , y), a realizer h of
¬∃f .∀x .¬ϕ(x , f (x)).

2 From l we define a map f = fun(l) sending any xi to yi and
any other x to dummy and a partial realizer s of
∀x .¬ϕ(x , f (x)), valid for x = xi for some i .

3 r applies h to f and a partial realizer of ∀x .¬ϕ(x , f (x)).
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The Realization Interpretation for proofs with Excluded
Middle and Choice

1 If h never requires an instance of s on some x ̸= xi for all i
then we have a realizer.

2 Otherwise, r asks p to provide for x a realizer q of ¬ϕ(x , y).
3 Then the process restarts with the list l extended with the

triple ⟨x , y ,q⟩.
4 By a continuity argument eventually the list l stops growing

and indeed we have a realizer of choice.
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End Of the Talk

I want to thank the organizer of the Workshop in Honour of
Thierry Coquand’s 60th Birthday, for giving me the possibility of

reliving the joint works I had with T. Coquand and with more
friends, M. Bezem and D. Fridlender.

I hope I could communicate to the audience the interest of a
trial-and-error constructive interpretation, valid for the most of

Classical Mathematics, and first proposed by T. Coquand.
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