Programming in type theory, or:

How Coq became my favorite programming language

Xavier Leroy (Collége de France)
Workshop in Honour of Thierry Coquand’s 60th Birthday, 2022-08-24

Early days

Starting my graduate studies

Two suns : Caml (functional language) and Coq (proof assistant).

Types in programming languages

A central theme in 1990’s P.L. research.

Goals for a P.L. type system :

 Guarantee integrity of data structures.
» Find bugs.

+ Express some of the program structure.

Non-goal : termination. Turing-completeness was a must-have.

Some work on typing (other) effects.

The mysterious system called Coq

Technically : OK
(Calculus of Constructions ~ F,, on steroids)

Conceptually : mysterious
(I had no background in constructive logic back then...)

Practically : unclear
(What were the intended uses for this Coq system?)

My first attempt to use Coq (circa 1991)

Inductive Set regexp =
Empty: regexp
Epsilon: regexp
Char: nat -> regexp

|
|
| Seq: regexp -> regexp -> regexp
| Alt: regexp -> regexp -> regexp
|

Star: regexp —> regexp.

My first attempt to use Coq (circa 1991)

Inductive Set regexp =
Empty: regexp
Epsilon: regexp
Char: nat -> regexp

|
|
| Seq: regexp -> regexp -> regexp
| Alt: regexp -> regexp -> regexp
|

Star: regexp —> regexp.

Definition nullable : regexp -> Prop =
[r:regexp] (<Prop>Match r with
(* Empty *) False
(* Epsilon *) True
(* Char c *) [c:char] False
(* Seq r1l r2 *) [r1,r2:regexp] [nul,nu2:Prop] (nul /\ nu2)
(* Alt r1l r2 %) [r1,r2:regexp] [nul,nu2:Prop] (nul \/ nu2)

(x Star r1 *) [r1:regexp] [nul:Prop] True).
5

My first actual use of Coq (1998)

Specifying and proving properties of a JavaCard bytecode verifier
(=~ a type-checker for virtual machine code).

Part of a general movement towards mechanized metatheory of

programming languages.

Type Inference Verified: Algorithm ‘W in
Isabelle/HOL*

WOLFGANG NARASCHEWSKI and TOBIAS NIPKOW
Technische Universitait Miinchen, Institut fiir Informatik, 80290 Miinchen, Germany
e-mail: {narasche nipkow}@in.tum.de

Certification of a Type Inference Tool for ML:
Damas—Milner within Coq

CATHERINE DUBOIS

Université d’Evry Val d’Essonne. e-mail: Catherine. Dubois@lami univ-evry fr

VALERIE MENISSIER-MORAIN*

Université Paris 6. e-mail: Valerie Menissier@lip6 fr

Mechanized Metatheory for the Masses:
The PopLMARK Challenge

Brian E. Aydemir', Aaron Bohannon', Matthew Fairbairn?, J. Nathan Foster',
Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis', Geoffrey
Washburn!, Stephanie Weirich!, and Steve Zdancewic!

! Department of Computer and Information Sci
Computer Laboratory, Uni

e, University of Pennsylvania
of Cambridge

Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?

Mechanizing the metatheory of programming languages

On paper : mostly definitions by inference rules.

In Coq : mainly inductive predicates, with proofs by structural
induction, inversion, and Prolog-style search.

. Reserved Notation "Gamma 'v' t '€' T"
Typing Ir't:T (at level 101,

t custom stlc, T custom stlc at level 0).

x:TeTl
(T-VAR) Inductive has_type : context - tm - ty - Prop :=

TeEx:T | T.Var : vV Gamma x Ty,

Gamma x = Some Ty -

Gamma + x \in Ty

ILx:Ti -ty i T

- - e ° - | T Abs : V Gamma x T1 T2 tj,
THAX:T).t2 : T1—T2 (T-ABs) X > Ty ; Gamma - t1 \in Ty -
Gamma + \x:Tp, t; \in (T = T;)
T e 3 Tin=Tiz T-ty: T | TApp : V Ty T, Gamma t; t,
(T-ApPp) Gamma + ty \in (T2 - T1) -
-t t2 T2 Gamma -tz \in Tp -

Gamma + ty t2 \in Ty

(B. C. Pierce, 2002) (B. C. Pierce et al, since 2008)

Programming in Coq

verification of OCaml’s AVL sets library

(Filliatre and Letouzey, ESOP 2004)

Functors for Proofs and Programs

Jean-Christophe Filliatre and Pierre Letouzey

LRI - CNRS UMR 8623
Université Paris-Sud, France
{filliatr,letouzey}@lri.fr

Abstract. This paper presents the formal verification with the Coq
proof assistant of several applicative data structures implementing finite
sets. These implementations are parameterized by an ordered type for
the elements, using functors from the ML module system. The verifica-
tion follows closely this scheme, using the newly Coq module system.
One of the verified implementation is the actual code for sets and maps
from the Objective Caml standard library. The formalization refines the
informal specifications of these libraries into formal ones. The process
of verification exhibited two small errors in the balancing scheme, which
have been fixed and then verified. Beyond these verification results, this
article illustrates the use and benefits of modules and functors in a logical
framework.

An eye opener : verification of 0Caml’s AVL sets library

(Filliatre and Letouzey, ESOP 2004)

[OCaml types & functions] CYPERURREIDLY

| Node of t * elt * t * int

manual automatic
transcription extraction

K Inductive raw :=
[Coq types & functions] | Empty: raw

| Node: raw -> elt -> raw -> int -> raw.

Definition t :=

proofs {r:raw | bst r /\ avl r }.
. . Lemma add_spec: forall x y s,
[Coq speCIﬁcatlons] Iny (add x &) <=> In y s \/ eq y x.

An eye opener : verification of 0Caml’s AVL sets library

(Filliatre and Letouzey, ESOP 2004)

The birth of a methodology : Coq as a proof assistant and as a
functional programming language.

Found two balancing bugs in the OCaml implementation
(correct results but wrong complexity).

Prompted a welcome simplification of the compare function
(the “same fringe problem”) :

+ Original implementation : complicated traversal, termination
argument unclear.

 Revised implementation : using zippers as iterators;
all recursions are structural.

Compiler verification

How to establish that a compiler is free of miscompilation bugs?
Prove a semantic preservation property :

When executed, the generated compiled code behaves
as prescribed by the semantics of the source program.

An old idea:

+ McCarthy and Painter (1967) : arithmetic expressions, paper proof.
+ Milner and Weyrauch (1972) : arithmetic expressions, LCF proof.

« Rittri (1992), Hardin et al (1998) : functional abstract machines
(SECD, CAM, etc), paper proofs.

« Grégoire and Leroy (2002) : functional abstract machine, Coq proof.

Compiler verification mechanized in Stanford LCF (

3

Proving Compiler Correctness
in a Mechanized Logic

R. Milﬁerand R. Weyhrauch

Computer Science Department
Stanford University

Abstract

‘We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presentedenly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

10

Even proof scripts look familiar...

APPENDIX 2: command sequence for McCarthy-Painter lemma

GOAL Ye sp,lgwfse o1 iMT(compe e,3p)3svof(sp)}l((MSECe,svof sp))dpdofisp)),

‘Yo, lgwfse elilswft(compe @)ISTT,
Ye,lswfae ait{gount{compe &)=2)STT}

TRY & INDUCT 563
TRY 1 SIMPL}
LABEL INDHYP}
it ,
RY 1 °CASES weaetun(pig)t
LABEL TTy oefunterell
TRY 1 CASES typs an_Ni
YRY 3 SIMPL @Y ,FMT1,,FMSE;,FCOMPE, FISNFTL,,FCOUNT}
TRY 238S=,TT3SIMPL,TTSQED}
TRY -3 CASES tyh, g3.f}
CTRY 1 sUBST ,PcduPE)
SSe TTISIMPL, TTJUSE BOTH3 =;SS+,TT)
INCL=,41S8+) INCLom 23554} INCLmw=s, 3}5Ssa}
TRY 1 CONJ)
TRY ‘4 SIMPL;
TRY 1 USE COUNTL)
TRY 11
APPL ,INDHYP+2,gr@l0f o}
LABEL CARGLj
SIMPL~}QED}
TRY 2 USE CQUNT1s
TRY & .
11

Scaling up : the CompCert verified C compiler

Same kind of compiler verification, just more realistic :

+ Source language : most of C.
 Target language : assembly code for real processors.

- Produces efficient enough code — some optimizations.

Same methodology as in Filliatre and Letouzey :
program and prove the compiler in Coq.

12

A methodology : Coq as a programming language and a prover

Write the program as Coq datatypes and functions,
in “hyper-pure” functional style.

« No imperative programming; use monads for all effects.

+ All functions terminate (structural or well-founded recursion).
Prove the expected properties of these functions.

« The program is an object of Coq’s logic.

« No need for a separate program logic!
Generate executable OCaml code by automatic extraction.

- Erases most of the specs, proofs, and termination arguments.
+ Can link with hand-written OCaml code for I/0, etc.

13

Programming a compiler in hyper-pure functional style

Doable with a few tricks that can be presented as monads.

Error reporting : no exceptions; use the error monad.

Inductive mon A := 0K (res: A) | Error (err: error_message).

Algorithms whose termination is difficult to prove :
can use “fuel”, or Capretta’s delay type.

Definition mon A := nat -> option A.

CoInductive mon A := Now (res: A) | Later (d: mon A).

14

Programming a compiler in hyper-pure functional style

In-place update of arrays, graphs, ...: (state monad)
use functional data structures + state-passing functions.

Definition mon A := state -> A * state.

Can use dependent types to express interesting properties of the
imperative computation, such as monotonic state.

Definition mon A :=
forall (s: state), A * { s’: state | s’ >= s }.

Can even embed a Hoare-style program logic!

Definition Hoare (A: Type) (Pre: state -> Prop)
(Post: A -> state -> Prop) :=
forall (s: state),

Pre s -=> { v: A & s’: state | Post v s’ }. 15

Efficient, extensional data structures

Efficient functional data structures

Lists are not good enough! Need more efficient data structures

 for execution after extraction to OCaml;

- for computation within Coq, typically
for program logics embedded in Coq, like VST and Iris.

When verifying a given program, variables names are known, so
general theorems such as

get X (setyvm)=getxm ifx £y
can become mere computations

get "foo” (set "bar” vm) = get "foo” m

16

The main data structures of CompCert

Integers and floating-point numbers
Any base-2 representation is fast enough, but not Peano integers.

Finite maps for environments, functional arrays, graphs, ...

CompCert mainly uses binary tries indexed by base-2 positive
integers (= lists of bits).

Inductive tree A :=
| Leaf
| Node (1: tree A)
(x: option A)
(r: tree A).

Finite sets, union-find, priority queues for static analyses.
17

Extensional equality for sets and maps

Just as with functional extensionality, proofs are simpler when

- finite sets having the same elements are (Leibniz-)equal;

- finite maps that map equal keys to equal data are equal.

This is false for implementations based on binary search trees.
For instance, the set {1,2} has two BST representations :

Consequently, properties such as AU B = BU A are not identities,
only setoid equalities.

18

Extensionality via well-formedness constraints

Lists of integers are not an extensional representation of sets
(since [1;2] # [2;1]), but sorted lists are.

Definition intset := { 1: list Z | Sorted Z.1lt 1 }.

Binary tries are not an extensional representation of maps since
the empty map has multiple representations :

Leaf # Node Leaf None Leaf
Node Leaf None (Node Leaf None Leaf)

However, well-formed binary tries (not containing
Node Leaf None Leaf) are extensional.

Definition map A := { t: tree A | wf t }.

Problems with subset types

Definition map A := { t: tree A | wf t }.

The proposition wf t must have unique proofs

 Often, a Boolean equality works : wf tiswf_dec t = true.

« More generally : use a “mere proposition”.

20

Problems with subset types

Definition map A := { t: tree A | wf t }.

The proposition wf t must have unique proofs

 Often, a Boolean equality works : wf tiswf_dec t = true.

« More generally : use a “mere proposition”.

Subset types often compute inefficiently within Coq

« The proof term for wf t grows uncontrollably.

« Not an issue after extraction (proof erasure).

20

The attack of the huge proof term

Fixpoint t_set x v t := ...
Lemma wf_set: forall x v t, wf t -> wf (t_set x v t).

Definition set x vm :=

let (t, w) := m in exist (t_set x v t) (wf_set x v t w).

Successively adding N values vy, ..., vy to key 1 results in a small
binary tree Node Leaf (Some vy) Leaf and a proof of size N

wf set Tvy (... (wf_set 1vq wf Leaf) ...)

If wf_set is opaque, this proof is in normal form but takes time
O(N) for convertibility checks or just for garbage collection.

(Making wf_set transparent usually makes things worse.)

21

Extensionality via canonical representations

In some lucky cases, we can build representations that are
canonical : every abstract object has a unique representation.

Example : binary natural numbers.

Lists of bits are not a canonical representation (can always add
leading zero bits), but the following representation is :

Inductive positive :=
| xH (k1 %)
| x0 (p: positive) (* 2p *)
| xI (p: positive) (* 2p+1 *).

Inductive N := NO | Npos (p: positive).

22

Canonical binary tries (A. W. Appel and X. Leroy, 2022)

A similar approach leads to a canonical representation of binary
tries, where every map has a unique representation.

Inductive tree’ A := (* nonempty maps *)
| Node0O1: tree’ A -> tree’ A
| Node010: A -> tree’ A
| NodeO11: A -> tree’ A -> tree’ A
| Nodel0O: tree’ A -> tree’ A
| Nodel01: tree’ A -> tree’ A -> tree’ A
| Nodel110: tree’ A -> A -> tree’ A
| Nodelll: tree’ A -> A -> tree’ A -> tree’ A.

Inductive tree A := (*x all maps *)
| Empty: tree A
| Nodes: tree’ A -> tree A.

23

Concluding remarks

On programming in type theory

Hyper-pure functional programming works fine now that we have

- monads to express effects, including nontermination;

- efficient functional data structures.

The combination with dependent types gives tremendous power
to reason about programs.

Type theory is the mother of all program logics.

Coq was one of the first systems to demonstrate this approach.
Great work, Thierry!

24

On data structures and equality

It's not just mathematicians who need quotient types that work!

Programmers, too, would like data structures (with multiple
concrete representations for an abstract value) to behave well
with respect to equality...

(Canonical representations and subset types generally don’t
suffice to get efficient data structures.)

I still hope that solutions to this problem will come out of the
work on homotopy type theory or observational type theory.

In the meantime, it would be nice to have efficient computations
within Coq on subset types {x : A | P} where P is a mere
proposition.

23]

	Early days
	Programming in Coq
	Efficient, extensional data structures
	Concluding remarks

