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Early days



Starting my graduate studies

Two suns : Caml (functional language) and Coq (proof assistant).
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Types in programming languages

A central theme in 1990’s P.L. research.

Goals for a P.L. type system :

• Guarantee integrity of data structures.
• Find bugs.
• Express some of the program structure.

Non-goal : termination. Turing-completeness was a must-have.

Some work on typing (other) effects.
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The mysterious system called Coq

Technically : OK
(Calculus of Constructions ≈ Fω on steroids)

Conceptually : mysterious
(I had no background in constructive logic back then. . .)

Practically : unclear
(What were the intended uses for this Coq system?)
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My first attempt to use Coq (circa 1991)

Inductive Set regexp =

Empty: regexp

| Epsilon: regexp

| Char: nat -> regexp

| Seq: regexp -> regexp -> regexp

| Alt: regexp -> regexp -> regexp

| Star: regexp -> regexp.

Definition nullable : regexp -> Prop =

[r:regexp](<Prop>Match r with

(* Empty *) False

(* Epsilon *) True

(* Char c *) [c:char] False

(* Seq r1 r2 *) [r1,r2:regexp][nu1,nu2:Prop](nu1 /\ nu2)

(* Alt r1 r2 *) [r1,r2:regexp][nu1,nu2:Prop](nu1 \/ nu2)

(* Star r1 *) [r1:regexp][nu1:Prop] True).
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My first actual use of Coq (1998)

Specifying and proving properties of a JavaCard bytecode verifier
(≈ a type-checker for virtual machine code).

Part of a general movement towards mechanized metatheory of
programming languages.Journal of Automated Reasoning 23: 299–318, 1999.
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Abstract. This paper presents the first machine-checked verification of Milner’s type inference algo-
rithmW for computing the most general type of an untyped λ-term enriched with let-expressions.
This term language is the core of most typed functional programming languages and is also known
as Mini-ML. We show how to model all the concepts involved, in particular types and type schemes,
substitutions, and the thorny issue of “new” variables. Only a few key proofs are discussed in detail.
The theories and proofs are developed in Isabelle/HOL, the HOL instantiation of the generic theorem
prover Isabelle.
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1. Introduction

Most functional programming languages [17, 12, 2] have a common core: the
simply typed λ-calculus enriched with let-expressions, that is, local definitions
of polymorphic values. This language is called Mini-ML [3]. The set of well-typed
Mini-ML expressions is inductively defined by a set of inference rules. One of
the key properties of Mini-ML is that every well-typed expression has a most
general type. The computation of the most general type is called type inference.
It was first studied by Hindley [11] in the context of combinatory logic and later
independently by Milner [16] for Mini-ML. Milner’s type inference algorithm is
known as algorithm W . Damas proved the completeness ofW [4, 5].
This paper presents the first machine-checked proof of soundness and com-

pleteness of W . It is an extension of the work by Nazareth and Nipkow [19], who
treated the monomorphic case (no let-expressions). A shorter version of this paper
appeared in [18]. A verification of W by Dubois and Ménissier-Morain [8] in the
proof checker Coq is also published in this special issue.
Our paper provides the definitions of all concepts, the key lemmas, but al-

most no proofs. The complete development is accessible on the Internet via
http://isabelle.in.tum.de/library/HOL/MiniML/.

! Research supported by Esprit WG TYPES and DFG SPP Deduktion.

Journal of Automated Reasoning 23: 319–346, 1999.
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Abstract. We develop a formal proof of the ML type inference algorithm, within the Coq proof
assistant. We are much concerned with methodology and reusability of such a mechanization. This
proof is an essential step toward the certification of a complete ML compiler.

In this paper we present the Coq formalization of the typing system and its inference algorithm.
We establish formally the correctness and the completeness of the type inference algorithm with
respect to the typing rules of the language. We describe and comment on the mechanized proofs.

Key words:ML, type system, type inference, calculus of inductive constructions, formal proofs.

1. Introduction

Our goal is to realize a verified formal proof of the ML type inference algorithm,
within the Coq proof assistant. Although this algorithm was proved a long time
ago, this proof had never been mechanized entirely up to now. Simultaneously and
independently of our work, Nazareth and Nipkow have carried out such a formal
verification in the theorem prover Isabelle/HOL for simply-typed λ-terms [13], and
W. Naraschewski and T. Nipkow have done it for a polymorphic type discipline
[12].
The certification of an ML compiler done in [2] does not deal with the type

inference problem. However, it is a major step during the compilation process, and
it should be incorporated into any compiler certification.
The certification is done within the Coq system. This proof assistant suits well

to prove properties on programming languages because any abstract syntax can
easily be encoded as an inductive type and Coq provides specialized tactics to
handle inductive definitions. We present the Coq system more precisely in the next
section.

! Valérie Ménissier-Morain worked on that subject when she was at Université d’Évry Val
d’Essonne.
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Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?
We propose an initial set of benchmarks for measuring progress in this
area. Based on the metatheory of System F<:, a typed lambda-calculus
with second-order polymorphism, subtyping, and records, these bench-
marks embody many aspects of programming languages that are chal-
lenging to formalize: variable binding at both the term and type levels,
syntactic forms with variable numbers of components (including binders),
and proofs demanding complex induction principles. We hope that these
benchmarks will help clarify the current state of the art, provide a basis
for comparing competing technologies, and motivate further research.

1 Introduction

Many proofs about programming languages are long, straightforward, and te-
dious, with just a few interesting cases. Their complexity arises from the man-
agement of many details rather than from deep conceptual difficulties; yet small
mistakes or overlooked cases can invalidate large amounts of work. These effects
are amplified as languages scale: it becomes hard to keep definitions and proofs
consistent, to reuse work, and to ensure tight relationships between theory and
implementations. Automated proof assistants offer the hope of significantly eas-
ing these problems. However, despite much encouraging progress in recent years
and the availability of several mature tools (ACL2, Coq, HOL, HOL Light, Is-
abelle, Lego, NuPRL, PVS, Twelf, etc.), their use is still not commonplace.

We believe that the time is ripe to join the efforts of the two communities,
bringing developers of automated proof assistants together with a large pool
of eager potential clients—programming language designers and researchers. In
particular, we would like to answer two questions:

1. What is the current state of the art in formalizing language metatheory and
semantics? What can be recommended as best practices for groups (typically
not proof-assistant experts) embarking on formalizing language definitions,
either small- or large-scale?
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Mechanizing the metatheory of programming languages

On paper : mostly definitions by inference rules.

In Coq : mainly inductive predicates, with proofs by structural
induction, inversion, and Prolog-style search.

9.2 The Typing Relation 103

→ (typed) Based on λ (5-3)

Syntax

t ::= terms:

x variable

λx :T .t abstraction

t t application

v ::= values:

λx :T .t abstraction value

T ::= types:

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Evaluation t !→ t′

t1 !→ t′1

t1 t2 !→ t′1 t2

(E-App1)

t2 !→ t′2

v1 t2 !→ v1 t
′
2

(E-App2)

(λx :T11 .t12) v2 !→ [x" v2]t12 (E-AppAbs)

Typing Γ # t : T

x:T ∈ Γ

Γ # x : T
(T-Var)

Γ , x:T1 # t2 : T2

Γ # λx:T1.t2 : T1→T2

(T-Abs)

Γ # t1 : T11→T12 Γ # t2 : T11

Γ # t1 t2 : T12

(T-App)

Figure 9-1: Pure simply typed lambda-calculus (λ→)

x:Bool ∈ x:Bool
T-Var

x:Bool # x : Bool
T-Abs

# λx:Bool.x : Bool→Bool
T-True

# true : Bool
T-App

# (λx:Bool.x) true : Bool

9.2.2 Exercise [# $]: Show (by drawing derivation trees) that the following terms

have the indicated types:

1. f:Bool→Bool # f (if false then true else false) : Bool

2. f:Bool→Bool # λx:Bool. f (if x then false else x) : Bool→Bool %

9.2.3 Exercise [#]: Find a context Γ under which the term f x y has type Bool. Can

you give a simple description of the set of all such contexts? %

(B. C. Pierce, 2002) (B. C. Pierce et al, since 2008)
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Programming in Coq



An eye opener : verification of OCaml’s AVL sets library
(Filliâtre and Letouzey, ESOP 2004)

Functors for Proofs and Programs

Jean-Christophe Filliâtre and Pierre Letouzey

LRI – CNRS UMR 8623
Université Paris-Sud, France
{filliatr,letouzey}@lri.fr

Abstract. This paper presents the formal verification with the Coq
proof assistant of several applicative data structures implementing finite
sets. These implementations are parameterized by an ordered type for
the elements, using functors from the ML module system. The verifica-
tion follows closely this scheme, using the newly Coq module system.
One of the verified implementation is the actual code for sets and maps
from the Objective Caml standard library. The formalization refines the
informal specifications of these libraries into formal ones. The process
of verification exhibited two small errors in the balancing scheme, which
have been fixed and then verified. Beyond these verification results, this
article illustrates the use and benefits of modules and functors in a logical
framework.

1 Introduction

Balanced trees are notoriously hard to implement without mistakes. Exact in-
variants are difficult to figure out, even for applicative implementations. Since
most programming languages provide data structures for finite sets and dictio-
naries based on balanced trees, it is a real challenge for formal verification to
actually verify one of these.

We choose to verify the Set module from the Objective Caml (Ocaml)
standard library [2]. This applicative implementation of finite sets uses AVL
trees [4] and provides all expected operations, including union, difference and
intersection. Above all, this is a very efficient and heavily used implementation,
which motivates a correctness proof. In particular, a formalization requires to
give precise specifications to this library, a non-trivial task. This article also
presents the verification of two other implementations, using respectively sorted
lists and red-black trees [8], both written in Ocaml and using the same interface
as Set.

Building balanced trees over values of a given type requires this type to
be equipped with a total ordering function. Several techniques are available to
build a parametric library: in ML, polymorphism gives genericity over the type
and first-class functions give the genericity over the ordering function (e.g. it is
passed when initially creating the tree); in object oriented languages, objects to
be stored in the trees are given a suitable comparison function; etc. The most
elegant technique is probably the one provided by the ML module system, as
implemented in SML [9] and Ocaml [11]. A module is a collection of definitions

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 370–384, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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An eye opener : verification of OCaml’s AVL sets library
(Filliâtre and Letouzey, ESOP 2004)

OCaml types & functions

Coq types & functions

Coq specifications

manual
transcription

automatic
extraction

proofs

type t = Empty

| Node of t * elt * t * int

Inductive raw :=

| Empty: raw

| Node: raw -> elt -> raw -> int -> raw.

Definition t :=

{ r: raw | bst r /\ avl r }.

Lemma add_spec: forall x y s,

In y (add x s) <-> In y s \/ eq y x.

8



An eye opener : verification of OCaml’s AVL sets library
(Filliâtre and Letouzey, ESOP 2004)

The birth of a methodology : Coq as a proof assistant and as a
functional programming language.

Found two balancing bugs in the OCaml implementation
(correct results but wrong complexity).

Prompted a welcome simplification of the compare function
(the “same fringe problem”) :

• Original implementation : complicated traversal, termination
argument unclear.

• Revised implementation : using zippers as iterators ;
all recursions are structural.
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Compiler verification

How to establish that a compiler is free of miscompilation bugs ?
Prove a semantic preservation property :

When executed, the generated compiled code behaves
as prescribed by the semantics of the source program.

An old idea :

• McCarthy and Painter (1967) : arithmetic expressions, paper proof.
• Milner and Weyrauch (1972) : arithmetic expressions, LCF proof.
• Rittri (1992), Hardin et al (1998) : functional abstract machines

(SECD, CAM, etc), paper proofs.
• Grégoire and Leroy (2002) : functional abstract machine, Coq proof.
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Compiler verification mechanized in Stanford LCF (1972)
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Even proof scripts look familiar. . .
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Scaling up : the CompCert verified C compiler

Same kind of compiler verification, just more realistic :

• Source language : most of C.
• Target language : assembly code for real processors.
• Produces efficient enough code → some optimizations.

Same methodology as in Filliâtre and Letouzey :
program and prove the compiler in Coq.
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A methodology : Coq as a programming language and a prover

Write the program as Coq datatypes and functions,
in “hyper-pure” functional style.

• No imperative programming ; use monads for all effects.
• All functions terminate (structural or well-founded recursion).

Prove the expected properties of these functions.

• The program is an object of Coq’s logic.
• No need for a separate program logic !

Generate executable OCaml code by automatic extraction.

• Erases most of the specs, proofs, and termination arguments.
• Can link with hand-written OCaml code for I/O, etc.
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Programming a compiler in hyper-pure functional style

Doable with a few tricks that can be presented as monads.

Error reporting : no exceptions ; use the error monad.

Inductive mon A := OK (res: A) | Error (err: error_message).

Algorithms whose termination is difficult to prove :
can use “fuel”, or Capretta’s delay type.

Definition mon A := nat -> option A.

CoInductive mon A := Now (res: A) | Later (d: mon A).
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Programming a compiler in hyper-pure functional style

In-place update of arrays, graphs, . . . : (state monad)
use functional data structures + state-passing functions.

Definition mon A := state -> A * state.

Can use dependent types to express interesting properties of the
imperative computation, such as monotonic state.

Definition mon A :=

forall (s: state), A * { s’: state | s’ >= s }.

Can even embed a Hoare-style program logic !

Definition Hoare (A: Type) (Pre: state -> Prop)

(Post: A -> state -> Prop) :=

forall (s: state),

Pre s -> { v: A & s’: state | Post v s’ }.
15



Efficient, extensional data structures



Efficient functional data structures

Lists are not good enough ! Need more efficient data structures

• for execution after extraction to OCaml ;
• for computation within Coq, typically

for program logics embedded in Coq, like VST and Iris.

When verifying a given program, variables names are known, so
general theorems such as

get x (set y v m) = get x m if x ̸= y

can become mere computations

get ”foo” (set ”bar” v m)
∗→ get ”foo” m
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The main data structures of CompCert

Integers and floating-point numbers
Any base-2 representation is fast enough, but not Peano integers.

Finite maps for environments, functional arrays, graphs, . . .

CompCert mainly uses binary tries indexed by base-2 positive
integers (≡ lists of bits).

.
0 1

a
0 1

b
0 1

Inductive tree A :=

| Leaf

| Node (l: tree A)

(x: option A)

(r: tree A).

Finite sets, union-find, priority queues for static analyses.
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Extensional equality for sets and maps

Just as with functional extensionality, proofs are simpler when

• finite sets having the same elements are (Leibniz-)equal ;
• finite maps that map equal keys to equal data are equal.

This is false for implementations based on binary search trees.
For instance, the set {1, 2} has two BST representations :

1

2

2

1

Consequently, properties such as A ∪ B = B ∪ A are not identities,
only setoid equalities.
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Extensionality via well-formedness constraints

Lists of integers are not an extensional representation of sets
(since [1; 2] ̸= [2; 1]), but sorted lists are.

Definition intset := { l: list Z | Sorted Z.lt l }.

Binary tries are not an extensional representation of maps since
the empty map has multiple representations :

Leaf ̸= Node Leaf None Leaf

̸= Node Leaf None (Node Leaf None Leaf)

However, well-formed binary tries (not containing
Node Leaf None Leaf) are extensional.

Definition map A := { t: tree A | wf t }.
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Problems with subset types

Definition map A := { t: tree A | wf t }.

The proposition wf t must have unique proofs

• Often, a Boolean equality works : wf t is wf_dec t = true.
• More generally : use a “mere proposition”.

Subset types often compute inefficiently within Coq

• The proof term for wf t grows uncontrollably.
• Not an issue after extraction (proof erasure).
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The attack of the huge proof term

Fixpoint t_set x v t := ...

Lemma wf_set: forall x v t, wf t -> wf (t_set x v t).

Definition set x v m :=

let (t, w) := m in exist (t_set x v t) (wf_set x v t w).

Successively adding N values v1, . . . , vN to key 1 results in a small
binary tree Node Leaf (Some vN) Leaf and a proof of size N

wf set 1 vN ( . . . (wf set 1 v1 wf Leaf) . . . )

If wf_set is opaque, this proof is in normal form but takes time
O(N) for convertibility checks or just for garbage collection.

(Making wf_set transparent usually makes things worse.)
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Extensionality via canonical representations

In some lucky cases, we can build representations that are
canonical : every abstract object has a unique representation.

Example : binary natural numbers.

Lists of bits are not a canonical representation (can always add
leading zero bits), but the following representation is :

Inductive positive :=

| xH (* 1 *)

| xO (p: positive) (* 2p *)

| xI (p: positive) (* 2p+1 *).

Inductive N := N0 | Npos (p: positive).
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Canonical binary tries (A. W. Appel and X. Leroy, 2022)

A similar approach leads to a canonical representation of binary
tries, where every map has a unique representation.

Inductive tree’ A := (* nonempty maps *)

| Node001: tree’ A -> tree’ A

| Node010: A -> tree’ A

| Node011: A -> tree’ A -> tree’ A

| Node100: tree’ A -> tree’ A

| Node101: tree’ A -> tree’ A -> tree’ A

| Node110: tree’ A -> A -> tree’ A

| Node111: tree’ A -> A -> tree’ A -> tree’ A.

Inductive tree A := (* all maps *)

| Empty: tree A

| Nodes: tree’ A -> tree A.
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Concluding remarks



On programming in type theory

Hyper-pure functional programming works fine now that we have

• monads to express effects, including nontermination ;
• efficient functional data structures.

The combination with dependent types gives tremendous power
to reason about programs.

Type theory is the mother of all program logics.

Coq was one of the first systems to demonstrate this approach.
Great work, Thierry !
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On data structures and equality

It’s not just mathematicians who need quotient types that work !

Programmers, too, would like data structures (with multiple
concrete representations for an abstract value) to behave well
with respect to equality. . .

(Canonical representations and subset types generally don’t
suffice to get efficient data structures.)

I still hope that solutions to this problem will come out of the
work on homotopy type theory or observational type theory.

In the meantime, it would be nice to have efficient computations
within Coq on subset types {x : A | P} where P is a mere
proposition.
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